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Goal & Motivation

• Beam / Solid interactions occur in a wide
variety of scenarios:
• Engineering (steel-reinforced concrete,
composite materials)

• Biomechanics (collagen fibers in
connective tissue)

• Time-to-solution dominated by cost for linear
solver
• Scalability throughmultilevel methods
• Algebraic Multigrid (AMG) for its flexibility
• But: Ill-conditionedmatrix due to
discretization and penalty regularization
prohibit out-of-the-box block smoothing

Goal
Scalable AMGmethod for beam / solid interaction problems in penalty formulation
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Problem description

The coupling of beam-like structures with solid continua is described with the following coupled
linearized system for beam/solid interaction:(

KS+εMTκ−1M −εMTκ−1D
−εDTκ−1M KB+εDTκ−1D

)(
∆dS

∆dB

)
= −

(
rS

rB

)

Legend
(.)S solid contribution
(.)B beam contribution
d displacement DOFs
r residual
ε penalty parameter
κ scaling factor
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• Solid DOFs
• BeamDOFs
• Coupling constraints
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Challenges:
• Highly non-diagonal dominant and
ill-conditioned block matrix due to
penalty regularization

• Block matrix may be nonsymmetric
due to beam formulation
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Schur-type block preconditioning in MueLu
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Basic multigrid algorithm
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Basic ideas
• Attack di�erent components of the
error on di�erent grids / levels.

• Reconstruct the fine level solution
from information of coarse
representations of the fine problem.

• Apply cheap smoothers on each
multigrid level.

• Restriction and prolongation
operators transfer information
between di�erent multigrid levels.
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Block-iterative multi-level preconditioning

Approximations in Schur complement
preconditioners
1. Approximation Â ≈ A−1 to form Schur
complement S
⇒ Governed by the type of block

method
⇒ e.g. Â := diag(A)−1

2. Approximate block inverses within
Schur complement preconditioner by
standard AMG
⇒ Approximation quality can be

controlled through the AMG settings

BlockMethod(AMG)1

• Coupling constraints are considered on fine
level only

• Block method can be:
⇒ Block LU
⇒ Uzawa
⇒ SIMPLE

1Wiesner, T. A.; Mayr, M.; Popp, A.; Gee, M. W. and Wall, W. A. (2021): "Algebraic multigrid methods for saddle point
systems arising frommortar contact formulations", Numerical Methods in Engineering, 122, 15:3749-3779
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Buiding Blocks in MueLu

Factory Layout

BlockSmootherFactory
Block LU, Uzawa, SIMPLE

SmootherFactory1
Multigrid, ILU, ...

SchurComplementFactory

ApproximateInverseFactory
Diagonal, Lumping, Sparse Approximate Inverse

SubBlockFactory1

SmootherFactory2
Multigrid, ILU, ...

SubBlockFactory2

• Di�erent Factories
make up the
Block-Smoother

• Can be specified with
appropriate xml-file

• Several user-specific
options
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Sparse approximate invese

Due to the penalty regularization using just a diagonal approximation of the inverse inside the
Schur complement calculation is not su�icient:

• Sparse approximate inverse methods
(SPAI2) can produce better approximation

• Usematrix graph ofA to calculate inverse Â
on this sparsity pattern

• Based on Frobenius normminimization:

min
Â∈S

||AÂ− I||F

with S being the set of all sparse matrices
with some known structure

Parallel computation
Decomposition into several least squares
problemsmakes it inherently parallel:

||AÂ− I||2F =
n∑

k=1
||(AÂk − I)ek||22,

for each row k solve
min
Âk

||AÂk − ek||2

with QR-decomposition

2Grothe, M. J. and Huckle, T. (1997): "Parallel preconditioning with sparse approximate inverses", Journal Of Scientific
Computing, 18, 3:838-853
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A priori pattern selection

Using just the pattern ofA as input might not result in a satisfactory result, the matrix pattern
needs to be enriched for a good sparse inverse approximation:

• Static approch by using recursive powers of
graph of matrixA→ recursion depth
defined as level l

• Combining rows of graph J(A) such that3:

J(Al
k) = J(Al−1

k )J(Al−1)

• Pre- and post filtering of input graph and
sparse inverse approximation with
threshold value τ

SPAI with static pattern selection
1. Tresholding of J(A)
2. Determine graph of powers of A: J(Al)
3. Calculate sparse inverse
approximation Â

4. Post filtering of Â

3Chow E. (2001): "Parallel implementation and practical use of sparse approximate inverse preconditioners with a
priori sparsity patterns", The International Journal Of High Performance Computing Applications, 15:56-74
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Solid block with random fiber placement

Settings

Discretization
# Solid DOFs: 27783
# Beam DOFs: 1548
# procs: 1
Solver
Newton convergence: 10−6 (rel)
GMRES convergence: 10−8 (rel)

Material Parameters
Solid: ES = 1 N

m2 , νS = 0.3
hyperelastic Saint Venant-Kirchho�model

Beam: EB = 10 N
m2 , νB = 0.0

torsion-free Kirchho�-Love model
Penalty: p = 10 N

m

• minimal working problem to be used
for weak scaling study

• bottom surface is fixed, tensile
surface load on top side
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Weak scaling study

Weak scaling study: Cube filled with randomly placed and oriented fibers.

...scale up

1 x 1 x 1 domain
• ∼ 25.000 Dofs
• 1 Processor

2 x 2 x 2 subdomains
• ∼ 200.000 Dofs
• 8 Processors

10 x 10 x 10 subdomains
• ∼ 25.000.000 Dofs
• 1000 Processors
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Weak scaling study

Weak scaling hierachy
ID nproc nS

DOF nB
DOF ntotal

DOF ntotal
DOF/proc

1 1 27783 1548 29331 29331.0
2 8 206763 14544 221307 27663.4
3 27 680943 52188 733131 27153.0
4 64 1594323 124788 1719111 26861.1
5 125 3090903 247560 3338463 26707.7
6 216 5314683 432300 5746983 26606.4
7 343 8409663 688956 9098619 26526.6
8 512 12519843 1035876 13555719 26476.1
9 729 17789223 1484736 19273959 26438.9
10 1000 24361803 2037192 26398995 26399.0

Domaindecompositionapproach
based on a geometric bisection
for ID = 2with nproc = 8
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Weak scaling study

0 100 200 300 400 500 600 700 800 900 1,000
0

10

20

30

Number of parallel processes [-]

Av
er
ag
ed
lin
ea
ri
te
ra
tio
ns
[-]

Iterations

0

5

10

15

Av
er
ag
ed
so
lv
er
tim

e
[s
]

BiCGSTAB time

Max Firmbach | Institute for Mathematics and Computer-Based Simulation 16



Fiber-Reinforced Composite Plate4

Settings

Discretization
# Solid DOFs: 1950
# Beam DOFs: 10992
# procs: 6
Solver
Newton convergence: 10−6 (rel)
BiCGSTAB convergence: 10−8 (rel)

Material Parameters
Solid: ES = 10 N

m2 , νS = 0.3
hyperelastic Saint Venant-Kirchho�model

Beam: EB = 1000 N
m2 , νB = 0.0

torsion-free Kirchho�-Love model
Penalty: p = 1000 N

m Deformation of the plate due to tensile load
6Steinbrecher, I.; Mayr, M.; Grill, M. J.; Kremheller, J.; Meier, C. and Popp, A. (2020): "A mortar-type finite element

approach for embedding 1D beams into 3D solid volumes", Computational Mechanics, 66:1377-1398
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Steel-Reinforced Concrete Beam

Settings

Discretization
# Solid DOFs: 5376
# Beam DOFs: 1686
# procs: 6
Solver
Newton convergence: 10−6 (rel)
BiCGSTAB convergence: 10−8 (rel)

Material Parameters
Solid: ES = 30 N

m2 , νS = 0.3
hyperelastic Saint Venant-Kirchho�model

Beam: EB = 210 N
m2 , νB = 0.0

torsion-free Kirchho�-Love model
Penalty: p = 1000 N

m

Four-point bending test under static loading5

5Braml, T.; Wimmer, J. and Varabei, Y. (2022): "Erfordernisse an die Datenaufnahme und -verarbeitung zur Erzeugung
von intelligenten Digitalen Zwillingen", Innsbrucker Bautage 2022 (eds Berger, J.) (Studia, 2022), 31-49
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Outlook

AMG(BlockMethod)

• Consider coupling constraints on all levels
• Assembly of the beam DOFs nullspace
specific to beam formulation

• For now only considered torsion-free
Kirchho�–Love beam elements:
⇒ Su�icient for a broad range of applications
⇒ Restriction to straight center line in

reference configuration
Extend to other beam formulations in the
near future.

Max Firmbach | Institute for Mathematics and Computer-Based Simulation 19



Thank you!

Collaborators:
• Matthias Mayr
• Alexander Popp
• Ivo Steinbrecher

References:
Open-source implementation will be available in
Trilinos/MueLu: https://trilinos.github.io/muelu.html

Contact:
• max.firmbach@unibw.de
• https://www.unibw.de/imcs-en
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