EuroTUG

European Trilinos User Group Meeting Munich (virtual) | Germany | 12 - 14 September 2022

Physics based block preconditioning with sparse approximate inverses in MueLu

An application to beam solid interaction

Max Firmbach¹

Institute for Mathematics and Computer-Based Simulation (IMCS), University of the Bundeswehr Munich

1. Goal & Motivation

Problem description

2. Schur-type block preconditioning in MueLu

Basic multigrid algorithm Building blocks in MueLu

3. Sparse Approximate Inverses

Sparsity pattern selection

4. Application

Weak scaling study

Composite plate

1. Goal & Motivation

Problem description

2. Schur-type block preconditioning in MueLu Basic multigrid algorithm Building blocks in Mue

3. Sparse Approximate Inverses

Sparsity pattern selection

4. Application

Weak scaling study

Composite plate

Goal & Motivation

- Beam / Solid interactions occur in a wide variety of scenarios:
 - Engineering (steel-reinforced concrete, composite materials)
 - Biomechanics (collagen fibers in connective tissue)
- Time-to-solution dominated by cost for linear solver
 - Scalability through multilevel methods
 - Algebraic Multigrid (AMG) for its flexibility
 - But: Ill-conditioned matrix due to discretization and penalty regularization prohibit out-of-the-box block smoothing

Goal

Scalable AMG method for beam / solid interaction problems in penalty formulation

The coupling of beam-like structures with solid continua is described with the following coupled linearized system for beam/solid interaction:

$$\begin{pmatrix} \mathbf{K}_S + \epsilon \mathbf{M}^T \kappa^{-1} \mathbf{M} & -\epsilon \mathbf{M}^T \kappa^{-1} \mathbf{D} \\ -\epsilon \mathbf{D}^T \kappa^{-1} \mathbf{M} & \mathbf{K}_B + \epsilon \mathbf{D}^T \kappa^{-1} \mathbf{D} \end{pmatrix} \begin{pmatrix} \Delta \mathbf{d}_S \\ \Delta \mathbf{d}_B \end{pmatrix} = - \begin{pmatrix} \mathbf{r}_S \\ \mathbf{r}_B \end{pmatrix}$$

Legend

- $(.)_S$ solid contribution
- $(.)_B$ beam contribution
- d displacement DOFs
- r residual
- ϵ penalty parameter
- κ scaling factor

The coupling of beam-like structures with solid continua is described with the following coupled linearized system for beam/solid interaction:

$$\begin{pmatrix} \mathbf{K}_{S} + \epsilon \mathbf{M}^{T} \kappa^{-1} \mathbf{M} & -\epsilon \mathbf{M}^{T} \kappa^{-1} \mathbf{D} \\ -\epsilon \mathbf{D}^{T} \kappa^{-1} \mathbf{M} & \mathbf{K}_{B} + \epsilon \mathbf{D}^{T} \kappa^{-1} \mathbf{D} \end{pmatrix} \begin{pmatrix} \Delta \mathbf{d}_{S} \\ \Delta \mathbf{d}_{B} \end{pmatrix} = - \begin{pmatrix} \mathbf{r}_{S} \\ \mathbf{r}_{B} \end{pmatrix}$$

Legend

- $(.)_S$ solid contribution
- $(.)_B$ beam contribution
- d displacement DOFs
- r residual
- ϵ penalty parameter
- κ scaling factor

- Solid DOFs
- Beam DOFs
- Coupling constraints

The coupling of beam-like structures with solid continua is described with the following coupled linearized system for beam/solid interaction:

$$\begin{pmatrix} \mathbf{K}_{S} + \epsilon \mathbf{M}^{T} \kappa^{-1} \mathbf{M} & -\epsilon \mathbf{M}^{T} \kappa^{-1} \mathbf{D} \\ -\epsilon \mathbf{D}^{T} \kappa^{-1} \mathbf{M} & \mathbf{K}_{B} + \epsilon \mathbf{D}^{T} \kappa^{-1} \mathbf{D} \end{pmatrix} \begin{pmatrix} \Delta \mathbf{d}_{S} \\ \Delta \mathbf{d}_{B} \end{pmatrix} = - \begin{pmatrix} \mathbf{r}_{S} \\ \mathbf{r}_{B} \end{pmatrix}$$

Legend

- $(.)_S$ solid contribution
- $(.)_B$ beam contribution
- d displacement DOFs
- r residual
- ϵ penalty parameter
- κ scaling factor

Challenges:

- Highly non-diagonal dominant and ill-conditioned block matrix due to penalty regularization
- Block matrix may be nonsymmetric due to beam formulation

1. Goal & Motivation Problem description

2. Schur-type block preconditioning in MueLu

Basic multigrid algorithm

Building blocks in MueLu

3. Sparse Approximate Inverses

Sparsity pattern selection

4. Application

Weak scaling study

Composite plate

Basic ideas

• Attack different components of the error on different grids / levels.

Basic ideas

- Attack different components of the error on different grids / levels.
- Reconstruct the fine level solution from information of coarse representations of the fine problem.

Basic ideas

- Attack different components of the error on different grids / levels.
- Reconstruct the fine level solution from information of coarse representations of the fine problem.
- Apply cheap **smoothers** on each multigrid level.

Basic ideas

- Attack different components of the error on different grids / levels.
- Reconstruct the fine level solution from information of coarse representations of the fine problem.
- Apply cheap **smoothers** on each multigrid level.
- Restriction and prolongation operators transfer information between different multigrid levels.

Approximations in Schur complement preconditioners

- 1. Approximation $\widehat{A}\approx A^{-1}$ to form Schur complement S
 - ⇒ Governed by the type of block method
 - $\Rightarrow \text{ e.g. } \widehat{A} := diag(A)^{-1}$
- 2. Approximate block inverses within Schur complement preconditioner by standard AMG
 - ⇒ Approximation quality can be controlled through the AMG settings

BlockMethod(AMG)¹

- Coupling constraints are considered on fine level only
- Block method can be:
 - \Rightarrow Block LU
 - \Rightarrow Uzawa
 - \Rightarrow SIMPLE

¹Wiesner, T. A.; Mayr, M.; Popp, A.; Gee, M. W. and Wall, W. A. (2021): "Algebraic multigrid methods for saddle point systems arising from mortar contact formulations", *Numerical Methods in Engineering*, 122, 15:3749-3779

- Different Factories make up the Block-Smoother
- Can be specified with appropriate xml-file
- Several user-specific options

1. Goal & Motivation Problem descriptio

2. Schur-type block preconditioning in MueLu Basic multigrid algorithm Building blocks in Mue

3. Sparse Approximate Inverses

Sparsity pattern selection

4. Application

Weak scaling study

Composite plate

Due to the penalty regularization using just a diagonal approximation of the inverse inside the Schur complement calculation is not sufficient:

- Sparse approximate inverse methods (SPAI²) can produce better approximation
- Use matrix graph of A to calculate inverse \widehat{A} on this sparsity pattern
- Based on Frobenius norm minimization:

 $\min_{\widehat{A} \in S} ||A\widehat{A} - I||_F$

with ${\cal S}$ being the set of all sparse matrices with some known structure

Parallel computation

Decomposition into several least squares problems makes it inherently parallel: $||A\widehat{A} - I||_F^2 = \sum_{k=1}^n ||(A\widehat{A}_k - I)e_k||_2^2,$ for each row k solve $\min_{\widehat{A}_k} ||A\widehat{A}_k - e_k||_2$ with QR-decomposition

²Grothe, M. J. and Huckle, T. (1997): "Parallel preconditioning with sparse approximate inverses", *Journal Of Scientific Computing*, *18*, *3:838-853*

Using just the pattern of A as input might not result in a satisfactory result, the matrix pattern needs to be enriched for a good sparse inverse approximation:

- Static approch by using recursive powers of graph of matrix $A \rightarrow$ recursion depth defined as level l
- Combining rows of graph J(A) such that³:

 $J(A_k^l) = J(A_k^{l-1})J(A^{l-1})$

• Pre- and post filtering of input graph and sparse inverse approximation with threshold value τ

SPAI with static pattern selection

- **1.** Tresholding of J(A)
- 2. Determine graph of powers of A: $J(A^l)$
- 3. Calculate sparse inverse approximation \widehat{A}
- 4. Post filtering of \widehat{A}

³Chow E. (2001): "Parallel implementation and practical use of sparse approximate inverse preconditioners with a priori sparsity patterns", *The International Journal Of High Performance Computing Applications*, *15:56-74*

1. Goal & Motivation Problem descriptic

Schur-type block preconditioning in MueLu

igrid algorithm 💦 Building blocks in MueLu

3. Sparse Approximate Inverses

Sparsity pattern selection

4. Application

Weak scaling study

Composite plate

Settings

Discretization

# Solid DOFs:	27783
# Beam DOFs:	1548
# procs:	1

Solver

Newton convergence: 10^{-6} (rel) GMRES convergence: 10^{-8} (rel)

Material Parameters

 $\begin{array}{ll} \mbox{Solid:} & E_S = 1 \frac{N}{m^2}, \nu_S = 0.3 \\ & \mbox{hyperelastic Saint Venant-Kirchhoff model} \\ \mbox{Beam:} & E_B = 10 \frac{N}{m^2}, \nu_B = 0.0 \\ & \mbox{torsion-free Kirchhoff-Love model} \\ \mbox{Penalty:} & p = 10 \frac{N}{m} \end{array}$

- minimal working problem to be used for weak scaling study
- bottom surface is fixed, tensile surface load on top side

Weak scaling study

Weak scaling study: Cube filled with randomly placed and oriented fibers.

Weak scaling hierachy

ID	n^{proc}	n_{DOF}^S	n^B_{DOF}	n_{DOF}^{total}	$n_{DOF/proc}^{total}$
1	1	27783	1548	29331	29331.0
2	8	206763	14544	221307	27663.4
3	27	680943	52188	733131	27153.0
4	64	1594323	124788	1719111	26861.1
5	125	3090903	247560	3338463	26707.7
6	216	5314683	432300	5746983	26606.4
7	343	8409663	688956	9098619	26526.6
8	512	12519843	1035876	13555719	26476.1
9	729	17789223	1484736	19273959	26438.9
10	1000	24361803	2037192	26398995	26399.0

Domain decomposition approach based on a geometric bisection for ID = 2 with $n^{proc} = 8$

Weak scaling study

Fiber-Reinforced Composite Plate⁴

Settings

Discretization

# Solid DOFs:	1950
# Beam DOFs:	10992
# procs:	6

Solver

Newton convergence: 10^{-6} (rel)BiCGSTAB convergence: 10^{-8} (rel)

Material Parameters

 $\begin{array}{ll} \mbox{Solid:} & E_S = 10 \frac{N}{m^2}, \nu_S = 0.3 \\ & \mbox{hyperelastic Saint Venant-Kirchhoff model} \\ \mbox{Beam:} & E_B = 1000 \frac{N}{m^2}, \nu_B = 0.0 \\ & \mbox{torsion-free Kirchhoff-Love model} \\ \mbox{Penalty:} & p = 1000 \frac{N}{m} \\ \end{array}$

Deformation of the plate due to tensile load

⁶Steinbrecher, I.; Mayr, M.; Grill, M. J.; Kremheller, J.; Meier, C. and Popp, A. (2020): "A mortar-type finite element approach for embedding 1D beams into 3D solid volumes", *Computational Mechanics, 66:*1377-1398

Steel-Reinforced Concrete Beam

Settings

Discretization

# Solid DOFs:	5376
# Beam DOFs:	1686
# procs:	6

Solver

Newton convergence: 10^{-6} (rel)BiCGSTAB convergence: 10^{-8} (rel)

Material Parameters

 $\begin{array}{ll} \mbox{Solid:} & E_S = 30 \frac{N}{m^2}, \nu_S = 0.3 \\ & \mbox{hyperelastic Saint Venant-Kirchhoff model} \\ \mbox{Beam:} & E_B = 210 \frac{N}{m^2}, \nu_B = 0.0 \\ & \mbox{torsion-free Kirchhoff-Love model} \\ \mbox{Penalty:} & p = 1000 \frac{N}{m} \\ \end{array}$

Four-point bending test under static loading⁵

⁵Braml, T.; Wimmer, J. and Varabei, Y. (2022): "Erfordernisse an die Datenaufnahme und -verarbeitung zur Erzeugung von intelligenten Digitalen Zwillingen", *Innsbrucker Bautage 2022 (eds Berger, J.) (Studia, 2022), 31-49*

AMG(BlockMethod)

- Consider coupling constraints on all levels
- Assembly of the beam DOFs nullspace specific to beam formulation

- For now only considered torsion-free Kirchhoff–Love beam elements:
 - ⇒ Sufficient for a broad range of applications
 - ⇒ Restriction to straight center line in reference configuration

Extend to other beam formulations in the near future.

Thank you!

Collaborators:

- Matthias Mayr
- Alexander Popp
- Ivo Steinbrecher

References:

Open-source implementation will be available in Trilinos/MueLu: https://trilinos.github.io/muelu.html

Contact:

- max.firmbach@unibw.de
- https://www.unibw.de/imcs-en