Leadership Scientific Software Trends
from 2000 — 2040 Through the Lens of

the Trilinos Project

PRESENTED BY
Michael Heroux

—_ - ‘ — —— @ENERGY AISA

—— ey b

Sandia National Laborator
multimission laboratory managed and
operated by National Technology and
Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell International
Inc. for the U.S. Department of Energy’s
National Nuclear Security Administration
under contract DE-NA0003525.

Brief history of my experience

> Started parallel programming with Fortran and Q8 calls on CDC Cyber 205

> Wrote Cray LIBSCI code for BLAS, LAPACK, sparse solvers, FFTs in Fortran/CAL

> Wrote code for industry apps FIDAP, FLUENT, STAR-CD for vector/MPP machines

> Founder of Trilinos, Mantevo, HPCG projects

> Founder of original Kokkos — initial use of execution patterns, breaking of storage association.
° Architect of E4S, xSDK — Exascale Computing Project (ECP) software ecosystems

> Director of Software Technology for ECP — Broad visibility into 70+ next-gen products

Brief Trilinos History

2001 — 2009
2010 — 2016
2017 — Now

4 I Some Trilinos History

Trilinos started in December 2001
° Fun fact: The first Trilinos commit was on Fri Dec 14 22:43:40 2001

> While the command “commit log --reverse” shows the first Trilinos commit was on Fri Feb 13 23:00:10 1998,
this 1s a commit preserved from the partitioning package Zoltan that was integrated into Trilinos years later

° There are similar commits for the multigrid package ML

The “Tr1” in Trilinos was determined by the intent for three packages, there are now 50+ packages

Trilinos phases:
o Started with the Epetra stack: MPI-only, double precision arithmetic, up to 2B equations

> New stack based on Tpetra: MPI+Kokkos, templated precisions, arbitrary problem size

Trilinos-Kokkos/KokkosKernels relationship:
> Kokkos started in Trilinos: Extracted to support users who don’t need solvers, and those who do

> Kokkos and KokkosKernels snapshotted into Trilinos regularly

Motivation For Trilinos

= Sandia does LOTS of solver work.
* When I started at Sandia in May 1998:

* Aztec was a mature package. Used in many codes.

+ FETI, PETSc, DSCPack, Spooles, ARPACK, DASPK, and many
other codes were (and are) in use.

+ New projects were underway or planned in multi-level
preconditioners, eigensolvers, non-linear solvers, etc...

* The challenges:

¢ Little or no coordination was in place to:
 Efficiently reuse existing solver technology.
» Leverage new development across various projects.
» Support solver software processes.
» Provide consistent solver APIs for applications.

+ ASCI was forming software quality assurance/engineering
(SQA/SQE) requirements:
« Daunting requirements for any single solver effort to address alone.
Sandia

National
Laboratories

Evolving Trilinos Solution

» Trilinos! is an evolving framework to address these challenges:

¢ Fundamental atomic unit is a package.

+ Includes core set of vector, graph and matrix classes (Epetra/Tpetra packages).
¢ Provides a common abstract solver API (Thyra package).
L 2

Provides a ready-made package infrastructure (new package package):
» Source code management (cvs, bonsai).
 Build tools (autotools).
» Automated regression testing (queue directories within repository).
» Communication tools (mailman mail lists).

* Specifies requirements and suggested practices for package SQA.
* In general allows us to categorize efforts:
+ Efforts best done at the Trilinos level (useful to most or all packages).
+ Efforts best done at a package level (peculiar or important to a package).

+ Allows package developers to focus only on things that are unique to
their package.
e . L u : ” ﬁa?ldia |
1. Trilinos loose translation: “A string of pearls Jrimtak

Trilinos Strategic Goals

= Scalable Solvers: As problem size and processor counts increase,)
the cost of the solver will remain a nearly fixed percentage of the

total solution time. Algorithmic
= Hardened Solvers: Never fail unless problem essentially > Goals
unsolvable, in which case we diagnose and inform the user why the

problem fails and provide a reliable measure of error.

= Full Vertical Coverage: Provide leading edge capabilities from
basic linear algebra to transient and optimization solvers. Y,

= Universal Interoperability: All Trilinos packages will be ™~
interoperable, so that any combination of solver packages that
makes sense algorithmically will be possible within Trilinos.

= Universal Solver RAS: Trilinos will be: Software
+ Integrated into every major application at Sandia (Availability). Goals

* The leading edge hardened, efficient, scalable solutions for each of
these applications (Reliability).

¢ Easy to maintain and upgrade within the application environment)
(Serviceability).

Sandia
National
Laboratories

Trilinos Packages

Trilinos 1s a collection of Packages.

Each package 1s:

¢ Focused on important and state-of-the-art algorithms in its problem
regime.

¢ Developed by a small team of domain experts.

+ Self-contained: No (or minimal) explicit dependencies on any
other software packages (with some special exceptions).

¢ Configurable/buildable/documented on its own.

Sample packages: NOX, AztecOO, IFPACK.
Special packages: Epetra, TSF, Teuchos.

Sandia
National
Laboratories

Greek Names

I UNCERSTAND THEY
HAVE A WORD FOR A
SPORTS EVENT, TOO. I ™M
TRYING TO TRACK THAT
DOLUN.

WALLY MAS BEEN ALL T MAVE 1S ZEVUS.
RESEARCHMING GREEX AND PARTHENON,
WORDS TO NAME OUR AND THE WORD

NEW PRODULCT. "GREEX " ITSELF

»
I 3000 0 PORS Geted Tonture Bentante e

Copyuright D 2083 United Feature Sydicate, Inc,

Sandia
National
Laboratories

Day 1 of Package Life

CVS: Each package i1s self-contained in Trilinos/package/ directory.
Bugzilla: Each package has its own Bugzilla product.

Bonsai: Each package is browsable via Bonsai interface.

Mailman: Each Trilinos package, including Trilinos itself, has four mail
lists:
* package-checkins@software.sandia.gov
* CVS commit emails. “Finger on the pulse” list.
+ package-developers@software.sandia.gov
* Mailing list for developers.
* package-users@software.sandia.gov
 Issues for package users.
* package-announce@software.sandia.gov
» Releases and other announcements specific to the package.
= New_package (optional): Customizable boilerplate for
+ Autoconf/Automake/Doxygen/Python/Thyra/Epetra/TestHarness/Website

Sandia
National
Laboratories

Sample Package Maturation Process

Step

Example

Package added to CVS: Import existing code or start
with new_package.

ML CVS repository migrated into Trilinos (July 2002).

Mail lists, Bugzilla Product, Bonsai database
created.

Startup Steps

ml-announce, ml-users, ml-developers, ml-checkins, ml-
regression (@software.sandia.gov created, linked to CVS (July
2002).

Sandia
National
Laboratories

Trilinos Interoperability Mechanisms

M1: Package accepts user data as Epetra objects.

M2: Package can be used via TSF abstract solver classes.
M3: Package can use Epetra for private data.

M4: Package accesses solver services via TSF interfaces.

M35: Package builds under Trilinos configure scripts.

Sandia
National
Laboratories

Interoperability Example: AztecOO

= AztecOOQ: Preconditioned Krylov Solver Package.
* Primary Developer: Mike Heroux.

» Minimal explicit, essential dependence on other Trilinos packages.
+ Uses abstract interfaces to matrix/operator objects.
+ Has independent configure/build process (but can be invoked at Trilinos level).
+ Sole dependence is on Epetra (but easy to work around).
= [nteroperable with other Trilinos packages:
* Accepts user data as Epetra matrices/vectors.
¢ (Can use Epetra for internal matrices/vectors.
¢ (Can be used via TSF abstract interfaces.
¢ (Can be built via Trilinos configure/build process.

¢ (Can provide solver services for NOX.
¢ Can use IFPACK, ML or AztecOO objects as preconditioners.

Sandia
National
Laboratories

Observations from Trilinos 2001 - 2009

Focus on creating a federation to address numerous stakeholder issues:
° Bringing independent teams together to address software quality requirements
° Provide community for inter-dependent development teams
> Provide a single collection of libraries for users
° Retain small team ability for name recognition, autonomy at local level

o

Provide a large-scale product portfolio that sponsors can track, assess and talk about

Provide software platform:
> Common tools, processes and infrastructure
> Interoperable components for each other to use
> Ready-made NewPackage to kickstart a new effort
° Technical engagement with application teams
> Common data services API via Epetra abstract classes (e.g., Epetra_Operator)

Many of these attributes have modern replacements:
> Kokkos/KokkosKernels/Tpetra

> GitHub repos, tools, workflows
o TriBITS/CMake and Spack

15 I Expanding the Trilinos Developer Community

SANDIA REPORT
SAND2010-6890

Unlimited Release

Printed October 2010

Expanding The Trilinos Developer
Community

Michael A. Heroux

2010 —Focus on transition to community project

> Permissive license for easier corporate interactions

o

Contributor agreements for non-Sandia members

o

Website with non-Sandia and non-gov root

> Open repository

o

Tremendous effort and commitment to make real

Executive Summary

In order to collaborate with external developers most effectively, the Trilinos project
proposes to make progress on four topics. These topics are discussed below in detail, but
we state the recommendations here for quick reference.

1. Copyright and Licensing: The Trilinos Project should continue efforts 1o make as
much of its software base available under the BSD license as possible. Future
new packages should be licensed under the BSD license. All future software
contributions by outside individuals and organizations must be given to Trilinos
under a BSD license with external contributor copyrights in appropriate source
files.

2. Contributor Agreements: The Trilinos Project should have an individual and
organization contributor agreement similar to OpenMPIL. These agreements
should be standard forms avatiable from our website. All contributions, outside
of Sandia-funded work that is already unambiguously owned by Sandia, should be
made under one of these agreements.

3. Project Portal: The Trilinos Project portal (the public face of Trilinos) should be
http:/;www.arilinos.org. This site will be the first place Trilinos users and
developers will go for access to Trilinos documentation, discussions and
downloads. We will not eliminate SSG, or TSG. In fact, the trilinos.org website
will at first be a fagade for these other sites, and allow us to gradually shift the
location of data and services as we go forward, 1o best serve our interests, We
anticipate eltminating TSG within one year, but will keep SSG indefinitely.

4. Project Developer Site: The Trilinos Project should continue using SSG as the
primary project developer site, but we should explore other options for hosting
the Trilinos developer tools and reposttories in the future. At this time, we do not
see a viable alternative to using SSG, but we hope that in the future we could
provide more open access to external developers.

[EXTERNAL) [Triros-dovolopers) Trilinos ofticlally on github

o e o Trfizos-developers <rfinos-devolopers-bouncositriinos.
16 | The Transition to GitHub or bt o i
Perschbacher, Brent M <bmpersc@sandia.gov>
Tue 11/17/2015 12:28 PM
To: trilinos-developers@trilinos.org <trilinos-developers@trilinos.org>
AF TOOOS) Tat
NCVCI mlgr ated to S \ I 1 H_?rl]lg '?'Irli’linos Framework team is pleased to announce that the move to Github has been completed! | T«

You
warkirng on & Thes sapo wins Sieved 50 seirve Som whuoh has rade § Sayiiry roomgeile wih wvy acking
Cuves OF TRlnds. RS MO0 atOed TWl yin ST N0 & Yesh one of Trtnds 10 seisd dasit 0w % P
Poniiry UNAOm. Tl o el & rotaremsnd bl i B oason! Tariion (i I you Rrve Oomwnils yiu red b
SN0 QIR T 0 PAIPALIONS D8 Pdw 18 00 D bew

NU00 TNl Wt DAt 1R wivd SO0 41 00 T Goh 1000 5 DM oF s v M0 1O Oule faddy Yol
0 ComIng diys W S0 cupact 13 have Thom moved 100 and will arnounce when they ace ready. The
packages Pal mil 2e In Har own rope e Mooche, aptka, Sundance, Criinos, ForTriinon, Web Trlnos,
MOrca. and mealute.

Ta accons Trlnca pou will noad 2 Gt sccount. B pou Aaron! aloady Foasd Bond your gud Lo name
10 Am e Pal he can Pwte you 1 the Trinos project. ¥ you do Nt already hawe a0 3C00uNt you TN Bgn D
for free 3t ptxa oMb comicln. Keep v mind that Gihud s Toema of Sarvica ooly allow one Yoo account
POt parson.

Mow 30 get Telinos bom gt
Gmveb micws both Metpe and b sccess. Both ave oqualy vald and Both have har oot and cors In 2
Sandia sovironment. S5M & vAa we P30 Dean seing 50 £ may B Mo radural 10 contitue Wi £ bt e
cheioo can De made on an Indvidus baal

g

I Sone el s somdtiooaTolne o6

Note St i you choone 10 S0 MEDE you Wil Need © Malke Bre your prasier 200 el comectly on every

machinge Nt you Mend 10 do sork Yom. You can ind e rfoematon for Sanda s poocdes
Pore PLDESOTHAATCRA 0ew S ATON 3G | CorfoWT e Randa D000y s

sk

yinouTriros gt
Note 1t i you ChOosd 10 G0 b you Wil NEeS 10 LRIoAd your pubic key 10 GENUD for cach machine hat
P4 Pdend 10 30 work fram. G tax a comverkent way 10 233 toyy 10 your profile trough e sebale. You
can Ind revucticrs on how 1o add oyt & ARG M0G0 QYD LOM ROCRMORORGENG ME- SINVAIGIHE- 4400
VRl B LSV S0 vOK - ALCS R

F you ever forpet P moematon SEND grovides T varous UHLS on e page or sach rope on 1w right
hand menu Sar.

Ore of T most Giol faatoos wo Can Kvorage with Ma move 1o GHAE & foding. Fording can e wied
ke pusiing Seanchas 1 e main repostiony Is most caces, and alo can be usedu for taoltating
POracEons wilth pecsie who don't have puah 300088 20 T repoaions. 1Mec i an moducton o fe
concepl: MEpE Mhelp oS comaticeu o -a-tepo’

Wha 20 30 £ pous Sant get &l your changos In tolore e move:

¥ you Aant oot eweryihing sushed before e mave fref rot as 2 & o8l possbie 10 got that work onfo 2 clore
Fom el You witl need 53 have commitiad Swonyhing that you want 1 move ovet Thase commits dont
Pave 15 08 Cean and ready 10 purh, bt you should get Tham 35 Close at yOu Can ofvrwies you wil have

EuroTUG as external collaboration diagnostic

17

BEuroTUG meeting series has been around since 2012:

o 2012 in Lausanne, Switzerland
2013 in Munich, Germany

2014 in Lugano, Switzerland

2015 in Paris, France

2016 in Garching, Germany

2019 in Zurich, Switzerland

2022 virtually in Munich, Germany

(¢]

(¢]

(¢]

(e]

(¢]

(¢]

Recent challenges (starting in 2015 or so):

> Dev team focused on GPUs
> Heavy technical co-design work
° Disruptive usage model

> Many users not ready for GPU investment
° Ubiquitous, disruptive code changes
> GPU benefits for sparse codes only modest

Presently:
o Trilinos more ready for broad user group
o Users must transition to GPUs for performance

Time to renew outreach:
o Virtual and on-demand

° In-person as circumstances permit

——v

- ‘ June 5, 2012 EuroTUG, EPFL, Lausanne, Switzerland

Observations from Trilinos 2010 - 2016

Focus on expanding communities:
> Developers outside of Sandia

o Users outside of Sandia

Mature software products:
° Good documentation

> Lots of examples
> Very powerful compositional capabilities for multi-physics

o

Rich capabilities for circuits
MPI-only

o

Transition to new tools:
> CMake (via TriBITS)

> Git and GitHub

> BExternal web presence

This version of Trilinos is still widely used today

New Package: Kokkos

Very new project.
Goal:

+ Isolate key non-BLAS kernels for the purposes of optimization.

Kernels:

+ Dense vector/multivector updates and collective ops (not in BLAS).

¢ Sparse MV, MM, SV, SM.
Serial-only for now.
Reference implementation provided.

Mechanism for improving performance:
¢ Default is aggressive compilation of reference source.

¢+ BeBOP: Jim Demmel, Kathy Yelick, Rich Vuduc, UC Berkeley.
¢ Vector version: Cray.

Sandia
National
Laboratories

Example Kernels: axpy () and dot ()

template <class WDP> template <class WDP>
void WDP: :ReductionType
Node::parallel for(int beg, int end, Node: :parallel_reduce(int beg, int end,
WDP workdata) WDP workdata)
template <class T> template <class T>
struct AxpyOp { struct DotOp {
const T * Xx; typedef T ReductionType;
T *vy; const T * x, * y;
T alpha, beta; T identity() { return (T)o; }
void execute(int i) T generate(int i) { return x[i]*y[i]; }
{ y[i] = alpha*x[i] + beta*y[i]; } T reduce(T x, T y) { return x + y; }
}s }s
AxpyOp<double> op; DotOp<float> op;
op.X = ...; op.alpha = ...; Op.X = ...5; OpP.Y = ...;
op.y = ...; op.beta = ...; float dot;
node.parallel_for< AxpyOp<double> > dot = node.parallel_reduce< DotOp<float> >

(0, length, op); (0, length, op);

Hybrid Timings (Tpetra)

Tests of a simple iterations:
» power method: one sparse mat-vec, two vector operations

 conjugate gradient: one sparse mat-vec, five vector operations

DNVS/x104 from UF Sparse Matrix

Collection (100K rows, 9M entries)
mflop/s)| (mflop/s

NCCS/ORNL Lens node includes:

Single thread 140 614
» one NVIDIA Tesla C1060 8800 GPU 1,172 1,222
« one NVIDIA 8800 GTX Tesla GPU 1,475 1,531
- Four AMD quad-core CPUs Tesla + 8800 | R
- 16 threads 816 1,376
 Results are very tentative! 1 node

o suboptimal GPU traffic 15 threads + Tesla 867 1,731

2 nodes
 bad format/kernel for GPU 15 threads + Tesla 1,677 2,102

* bad data placement for threads

okkos Ecosystem for Performance Portability
22

Science and Engineering Applications

Trilinos

[7 v
== £ B B3

Kokkos Ecosystem addresses complexity of supporting numerous
many/multi-core architectures that are central to DOE HPC enterprise

23 I Observations from Trilinos 2017 - now

The move to accelerator platforms has been incredibly disruptive for everyone:
> Change in execution model (scale inward, discrete memory, new ISAs, new programming models, etc)
> New algorithms, aggregated applications
> New vendor hardware and software products

> Ubiquitous change to application source code

Demands a vertical co-design/development from vendor to libraries to applications

Result is an inward focus:

> Work with teams who are funded to work together and paid to embrace disruption

> Others must wait for new functionality and documentation until intensive design and development efforts
stabilize

Still in this phase, but approaching its end

> BuroTUG 2022 1s evidence we are emerging from an inward focus

> Lots of work to assist users in migrating to GPUs

Expanding the DOE Open-
Source Software Ecosystem:
ECP and E4S

DOE HPC Roadmap to Exascale Systems

ORNL

ORNL ___ HPE/AMD
IBMNVIDIA :

hos A4 -
:)
/

FY2018 FY 2021 FY 2022 FY 2023

-
’ ’

AN

Crap/intel KNL

" Crayintel Xeon/KNL IBMNVIDIA

Version 2.0

25

GPU (hundreds of cores)

Heterogeneous accelerated-node computing

Accelerated node computing: Designing, implementing, delivering, & deploying
agile software that effectively exploits heterogeneous node hardware

» Execute on the largest systems ... AND on today and tomorrow’s laptops, desktops, clusters, ...

« We view accelerators as any compute hardware specifically designed to accelerate certain mathematical
operations (typically with floating point numbers) that are typical outcomes of popular and commonly used
algorithms. We often use the term GPUs synonymously with accelerators. _

Text credit: Doug Kothe

CPU =) CPU/GPU > CPU/Multi-GPU > Diverse CPU/Multi-GPU
Summit/Sierra: First Exascale system
new Al-focused features Frontier is available
Einadgr;av\rlnsc,;;zcg’lt: GPU-RGSident & CurreIt focus

CCCCCCCCC
PPPPPPP

f:\\ EEEEEEEE Ref: A Gentle Introduction to GPU Programming, Michele Rosso and Andrew Myers, May 2021
(]

26

https://bssw.io/blog_posts/a-gentle-introduction-to-gpu-programming

ST L4 Teams

- WBS

- Name

- Pls

- PCs - Project
Coordinators

ECP ST Stats

- 35 L4 subprojects
- ~27% ECP budget

WBS WBS Name CAM/PI PC

23 Software Technology Heroux, Mike, Mcinnes, Lois _

231 Programming Models & Runtimes Thakur, Rajeev |

2.3.1.01 PMR SDK Shende, Sameer Shende, Sameer
2.3.1.07 Exascale MPI (MPICH) Guo, Yanfei Guo, Yanfei
2.3.1.08 Legion McCormick, Pat McCormick, Pat
2.3.1.09 PaRSEC Bosilica, George Carr, Earl
2.3.1.14 Pagoda: UPC++/GASNEet for Lightweight Communication and Global Address Space Support Hargrove, Paul Hargrove, Paul
2.3.1.16 SICM Lang, Michael Vigil, Brittney
2.3.1.17 OMPI-X Bernholdt, David Grundhoffer, Alicia

=——2"371.18 RAJA/Kokkos Trott, Christian Robert Prince, Kellsig———

2.3.1.19 Argo: Low-level resource management for the OS and runtime Beckman, Pete Gupta, Rinku
2.3.2 Development Tools

2.3.2.01 Development Tools Software Development Kit

2.3.2.06 Exa-PAPI++: The Exascale Performance Applicatio

2.3.2.08 Extending HPCToolkit to Measure and Analyze Cod

2.3.2.10 PROTEAS-TUNE

2.3.2.11 SOLLVE: Scaling OpenMP with LLVm for Exascale

2.3.2.12 FLANG

233 Mathematical Libraries

73301 Extreme-scale Scientific xSDK for ECP

2.3.3.06 Preparing PETSc/TAO for Exascale

2.3.3.07 STRUMPACK/SuperLU/FFTX: sparse direct solver

2.3.3.12 Enabling Time Integrators for Exascale Through SU

2.3.3.13 CLOVER: Computational Librari imi i

celerated Libraries for Exascal

<=5 32315

Sake: Scalable Algorithms and Kernels for Exascale

EXASCARALE
COMPUTING
PROJECT

ECP

«<=2-36.03 SNL ATDM Jim Stewart Prince! Kell§|§ E

234 Data and Visualization
2.3.4.01 Data and Visualization Software Development Kit
2.3.4.09 ADIOS Framework for Scientific Data on Exascale
2.3.4.10 DataLib: Data Libraries and Services Enabling Exas
2.34.13 ECP/VTK-m
23414 VeloC: Very Low Overhead Transparent Multilevel
2.3.4.15 ExalO - Delivering Efficient Parallel I/O on Exascale
2.3.4.16 ALPINE: Algorithms and Infrastructure for In Situ Vi
2.3.5 Software Ecosystem and Delivery
<7735 01 Software Ecosystem and Delivery Software Develo
2.3.5.09 SW Packaging Technologies
2.3.5.10 ExaWorks aney, Dan aney, Dan
2.3.6 NNSA ST Mohror, Kathryn |
2.3.6.01 LANL ATDM Mike Lang Vandenbusch, Tanya Marie
2.3.6.02 LLNL ATDM Becky Springmeyer Gamblin, Todd

We work on products applications need now and into the future

Key themes:
* Focus: GPU node architectures and advanced memory & storage technologies

» Create: New high-concurrency, latency tolerant algorithms
« Develop: New portable (Nvidia, Intel, AMD GPUs) software product

« Enable: Access and use via standard APIs

Software categories:
* Next generation established products: Widely used HPC products (e.g., MPICH, OpenMPI, Trilinos)

 Robust emerging products: Address key new requirements (e.g., Kokkos, RAJA, Spack)

 New products: Enable exploration of emerging HPC requirements (e.g., SICM, zfp, UnifyCR)

Example Products Engagement

MPI — Backbone of HPC apps Explore/develop MPICH and OpenMPI new features & standards
OpenMP/OpenACC —On-node parallelism Explore/develop new features and standards

Performance Portability Libraries Lightweight APIs for compile-time polymorphisms

LLVM/Vendor compilers Injecting HPC features, testing/feedback to vendors

Perf Tools - PAPI, TAU, HPCToolkit Explore/develop new features

Math Libraries: BLAS, sparse solvers, etc. Scalable algorithms and software, critical enabling technologies
|O0: HDF5, MPI-10, ADIOS Standard and next-gen 1O, leveraging non-volatile storage

Viz/Data Analysis ParaView-related product development, node concurrency

28

Software Platforms: “Working in Public” Nadia Eghbal

Platforms in the software wotld are digital environments that intend to improve
the value, reduce the cost, and accelerate the progress of the people and teams
who use them

Platforms can 1Erovide tools, workflows, frameworks, and cultures that provide a
(net) gain for those who engage

HIGH LOW

USER GROWTH USER GROWTH
HIGH Federations Clubs

Eghbal Platforms: CONTRIBUTOR (e.g., Rust) (e.g., Astropy)

GROWTH
LOW Stadiums Toys
CONTRIBUTOR (e.g., Babel) (e.g., ssh-chat)
GROWTH

Trilinos has been several of these types of platforms over time, but none is a
perfect fit

Eghbal, Nadia. Working in Public: The Making and Maintenance of Open Source Software (p. 60). Stripe Press. Kindle Edition.

About Platforms and ECP

 The ECP is commissioned to provide new scientific software capabilities on the frontier of
algorithms, software and hardware

 The ECP uses platforms to foster collaboration and cooperation as we head into the frontier

 The ECP has two primary software platforms:
— E4S: a comprehensive portfolio of ECP-sponsored products and dependencies
- SDKs: Domain-specific collaborative and aggregate product development of similar capabilities

30

Delivering an open, hierarchical software ecosystem

Levels of Integration Product Source and Delivery
------------------------- H ECP ST Open Product Integration Architecture r
_________________________________ J
« Build all SDKs N
« Build complete stack Source: ECP E4S team; Non-ECP Products (all dependencies)
Containerize binaries Delivery: spack install e4s; containers; Cl Testing

» Group similar products

» Make interoperable

« Assure policy compliant
Include external products

Source: SDK teams; Non-ECP teams (policy compliant, spackified)
Delivery: Apps directly; spack install sdk; future: vendor/facility

----------------“
[]

o

- mm------“-“-“---------------------------‘

|

« Standard workflow

Source: ECP L4 teams; Non-ECP Developers; Standards Groups
Existed before ECP

Delivery: Apps directly; spack; vendor stack; facility stack

—
‘L-----

im
——
ek

ﬂ
I'I'I
O
U
(0))]
_|
=1
o
<
o
(-
o
U
-
(@)
o
(-
(@)
—t=
wn

xSDK

xSDK release 0.7.0

(Nov 2021)
hypre
PETSc/TAO
SuperLU
Trilinos
AMReX
ArborX
ButterflyPACK
DTK
Ginkgo
heFFTe
libEnsemble
MAGMA
MFEM
Omega_h
PLASMA
PUMI
SLATE
Tasmanian
SUNDIALS
Strumpack
Alquimia
PFLOTRAN
deal.ll

from the
grl_e”CSI_IC_: E broader

SLEPG community

S~
\\ EXASCARALE
) COMPUTING
\ PROJECT
S

As motivated and validated by
the needs of ECP applications:

Performance
on new node
architectures

Interoperability,
complementarity: Extreme

strong
xSDK ECP Math scalability
libraries

Advanced,
coupled
multiphysics,
multiscale

Optimization,

uQ, solvers,
discretizations

XSDK: Primary delivery mechanism for ECP
math libraries’ continual advancements

Next-generation
algorithms

Advances in data
structures for new
node
architectures

Improving library
quality,
sustainability,
interoperability

A
xSDK lead: Ulrike Meier Yang (LLNL)
xSDK release lead: Satish Balay (ANL)

Toward
predictive
scientific
simulations

Increasing
performance,
portability,
productivity

Timeline: xSDK release xSDK release xSDK release
1 2 | | H EH E ® n

Ref: xSDK: Building an Ecosystem of Highly Efficient Math Libraries for Exascale, SIAM News, Jan 2021

32

https://sinews.siam.org/Details-Page/xsdk-building-an-ecosystem-of-highly-efficient-math-libraries-for-exascale

An SDK Maturity Model or, The Benefits of Coop-etition
Scenario: Two Product Teams in the Same SDK (e.g., math libs SDK aka xSDK)

Let’'s explore
multi-precision
algorithms for
GPUs together

33

Step 1: Concurrent exploration of the algorithm and software space

 In cross-laboratory expert teams, we focus on:

Advances in Mixed Precision Algorithms: 2021 Edition

by the ECP Multiprecision Effort Team (Lead: Hartwig Anzt)
Mixed precision dense direct solvers (MAGMA and SLATE);

Mixed precision sparse direct solvers (SuperLU);

Ahmad Abdelfattah, Hartwig Anzt, Alan Ayala, Erik G. Boman, Erin Car-
son, Sebastien Cayrols, Terry Cojean, Jack Dongarra, Rob Falgout, Mark
Gates, Thomas Griitzmacher, Nicholas J. Higham, Scott E. Kruger, Sherry

Mixed precision multigrid (on a theoretical level and in hypre); Li, Neil Lindquist, Yang Liu, Jennifer Loe, Piotr Luszczek, Pratik Nayak,
Daniel Osei-Kuffuor, Sri Pranesh, Sivasankaran Rajamanickam, Tobias
Mixed precision FFT (heFFTE), Ribizel, Barry Smith, Kasia Swirydowicz, Stephen Thomas, Stanimire

. o . . . Tomov, Yaohung M. Tsai, Ichi Yamazaki, Urike Meier Yang
Mixed precision preconditioning (Ginkgo, Trilinos);
. LE OF CONTENTS
Separating the arithmetic precision from the memory precision (Ginkgo); August 28, 2021 e
1 Dense Linear Algebra
Mixed precision Krylov solvers (theoretical analysis, Ginkgo, Trilinos); 12 Detall of nplamentaton « s -+«

1.3 Experimental results . . .
1.4 Enabling Mixed Precision Iterative Refinement Solvers on Spock

2 Eigen-Solvers

3 Mixed Precision Sparse Factorizations

* Mixed precision algorithms acknowledge and boost the GPU usage e s
— Algorithm development primarily focuses on GPU hardware (Summit, Frontier);) 7'jfpd*"";3:“h;,“kmmm

4.1.2 Convergence and Kernel Speedup for Preconditioned GMRES vs GMRES-IR

Latest evaluations on NVIDIA A100 (Perlmutter), AMD MI100 (Spock), Intel Gen9 GPU oy P

4.4 Amoldi-QR MGS-GMRES
4.5 Alterative Approaches

5 Mixed Precision Sparse Approximate Inverse Preconditioning

6 Mixed Precision Strategies for Multigrid

 Integrating mixed precision technology as production-ready implementation into oy i ety
ECP software products allows for the smooth integration info ECP applications. P D

’:\
EXASCALE
E (' \)P COMPUTING 9.6 PETSc
\ PROJECT 9.7 hypre
S

7.2 Approximate FFTs with speed-to-accuracy trade-offs
7.3 Towards mixed-precision MPI1

8 Memory Accessor

9 Software featuring mixed- and multiprecision functionality
9.1 Ginkgo . .
9.2 Kokkos Core, Kokkos Kernels, and Trilinos Additions . . .
9.3 MAGMA
94 heFFTe
9.5 PLASMA

TE® O N awww

<

Step 2: Incorporate lessons learned into library ecosystem

For library interoperability and mixed precision usage:

* PETSc develops an abstraction layer to device solvers (vendor libraries, Kokkos Kernels, etc.) e PETS
that allows flexible composition of Krylov solves in mixed-precision; —— C
* hypre already supports the compilation in different precisions and work now focuses on
compiling multiple precisions at a time to compose algorithms out of routines running in
different precision formats;

K =]
* Ginkgo makes the “memory accessor” integration-ready for other software libraries; — a Glnkgo
* Kokkos and KokkosKernels implements support for compiling in IEEE754 half precision; I l

-

» SLATE contains mixed precision algorithms and templates the working precision; and

—— P =

SLATE

R T

« MAGMA compiles in different precisions (z,c,d,s).

— 35

Establish coop-etition:
— Lower-cost comparison of products, increased incentives for improvement
— Encourages SDK participation: learn from each other, be in the know

Lead to community growth:
— Humanizes the other teams
— Exposes opportunities to share strengths

Retain autonomy of SDK member teams
— Each team makes its own informed decisions Ta keawayS from SDKS

— Better decisions from shared study of new ideas

Challenges
— Coordination has overhead, some developers don’t see the net benefit
— Poor habits can spill over (but so can good ones)

Bottom line: SDKs as we define them:
— Are platforms to support open, collaborative scientific discovery across teams
— Make sharing and cooperation, which are fundamental to science, easier to realize

Extreme-scale Scientific Software Stack (E4S)

 E4S: HPC software ecosystem — a curated software portfolio

» A Spack-based distribution of software tested for interoperability
and portability to multiple architectures

* Available from source, containers, cloud, binary caches

» Leverages and enhances SDK interoperability thrust

e Not a commercial product — an open resource for all

« Growing functionality: Aug 2022: E4S 22.08 — 100+ full release products

Portfolio testing\

Especially leadership
platforms

DocPortal
Single portal to all

E4S product info

Community Policies
Commitment to SW quality

https://eds.i0 ¥

Curated collection
The end of dependency hell

Build caches
Quarterly releases 10X build time

Release 22.2 — February

improvement E4S lead: Sameer Shende (U Oregon)
E4S 22.08
ARM64 systems with NVIDIA GPUs Highlights
* Base and full featured container images targeting
Turnkey stack https://e4s.io % Post-ECP Strategy three GPU architectures (Intel, AMD, NVIDIA)
A new user experience ' LSSw, ASCR Task Fory « Base images may be used to build custom

containers and support GPUs
New versions of Al/ML frameworks TensorFlow and
EXASCALE PyTorch optimized for GPUs on all three

COMPUTING

FReJEeT architectures: x86_64, ppc64le, and aarch64. 37

https://e4s.io/
https://spack.io/
https://e4s.io/

Download E4S 22.05 GPU Container Images: NVIDIA, AMD, Intel

* Separate full featured

w)}z Container Releases 7 I\ From source with '\vF‘,(};' K Singularity images for 3 GPU
T N7 architectures

* GPU base images for
— x86_64 (Intel, AMD, NVIDIA)
— ppc6dle
— aarch64

= \ EXASCALE . .
&= \(C\) [P &% https://e4s.io

E4S Community Policies: A commitment to quality improvement

(£Z3we o w0 DOl |CIES Policies: Version 1

The Extreme-scale Scientific Software Stack

https://e4s-project.github.io/policies.html

Purpose: Enhance sustainability and
interoperability .

Will serve as membership criteria for E4S

— Membership is not required for inclusion in E4S

— Also includes forward-looking draft policies)
Modeled after xXSDK community policies ¢
Multi-year effort led by SDK team .

— Included representation from across ST o

— Multiple rounds of feedback incorporated from
ST leadership and membership

SDK lead: Jim Willenbring (SNL) ~N °

xSDK

P1:
P2:
P3:
P4.
P5:
P6:
P7:
P8:
P9:

Spack-based Build and Installation

Minimal Validation Testing

Sustainability
Documentation
Product Metadata
Public Repository
Imported Software
Error Handling
Test Suite

We welcome feedback. What policies make sense for your software?

39

https://e4s-project.github.io/policies.html

B, e e A
E4S DocPortal o
E4S Products

Show 10 $ entries
* Slngle p0|nt Of access Name A Area Description

* All E4S products

e Summary Info
— Name
— Functional Area

- Description : All we need from the software team is
- Hoense a repo URL + up-to-date meta-data files

» Searchable

e Sortable

* Rendered daily from repos

i ™ | https://e4s-project.qithub.io/DocPortal.html

40

https://e4s-project.github.io/DocPortal.html

Goal: All E4S product documentation accessible from single portal on E4S.io
(working mock webpage below)

- . : = . e ¢ e A 8

@ Hht AT PTD

%l)\p, RIDGE

Computer Science and Mathematics

——— Y ADIOS2

ur ADOCRORTAL CONTACTLs rac [REEERNERE | ‘Q’
E4S Products / \DI% o

Nar
ADICS 2: The Adaptabie input Ostpist (/0) System version 2 s s Open-source
o Sow o [entries Framework ot 33TeRNES KHTAC AN EIPIQITINT CPAMINGED. 6. X akbFe Cars
""" atée « Fow fhen 3ex)
c
v §
| L
o
o
t
. Sme aacs ther
) na W v n workSows. ADIOS I v g level AP 113 Y
Py

XML et YAML rustione configurstion

© y ‘
\F o reease s nem
vorson every & ooy ’ .
e Group
conda, spack, homebrew s
a6 g ADIOS 2 wed to dramatcally modey the: s
8] .U AN gy tenan.
200 L
5] - e
.o o (e ~ w0 01
Nar '

https://e4s-project.github.io/DocPortal.html

—
L S \
\ EXASCARALE
) COMPUTING
\ PROJECT
S

https://e4s-project.github.io/DocPortal.html

Speeding up bare-metal installs using the E4S build cache

EAS Build Cache for Spack 0.17.0

Tio e s S cache., st i 1 40 yomr Spmch
o — st L g e oo o

- bt b o
% PLEASE ALLOW A FRW MINUTES POR THE INVENTORY 10 LOAD

0k o e of e prachages v 0 e & Bk of ol il variassn

O AlAxhsomwws FTOSLE XM 64
© A% Opesting Sytems Conie o an RHEL [—
el 15000001 169 P8 A COPT o PO
7 800 Spack package

s S e i
S B e R DA S s
:Mr — a-v;-ru« u.n.l «-1 ln:tn “hh - u—u:-‘ 2 IMADD on Summi
doype ¥ I A0 doyprei Bl Gcop® 110 Sewp®11] drewWIBIS Sruen® 30 Sowed 0] Seli® 10D ofleid
WDMApp on Rhea at OLCF
« 88,000+ binaries Setting up Spack
H Instaling Spack
e S3 mirror
Cloning the WDMapp package repo

 No need to build
from source code!

Rhea-Specific Setup

Mo Pwdmeps reacthedocs o'en\atestimachiney rhes Ml

https://oaciss.uoregon.edu/e4s/inventory.html

The E4Sp
many packages as precompiled |

roject has created a b

E4S Spack build cache:

(N

time. To use it

* Fusion plasma:
« WDMapp added E4S mirror
Speedup: 10X

$ woet https://oaciss.voregon
$ spack gpg trust eds.pud °
$ spack mirror add E4S https:

* Turbine wind plant:
. « ExaWind (Nalu-Wind)
Building WDMapp 6 minutes with build cache

* Up to 4 hours without

You should be able to just follow {
WDMAPP.

Using E4S WDMapp docker container
Special thanks

Alternatively, the E4S project has created a docker image that mirrors the to Sameer

Shende,
WDMapp and
ExaWind teams

Rhea environment, which can be used for local development and
debugging. To run this image, you need to have docker installed and then
do the following:

https://wdmapp.readthedocs.io/en/latest/machines/rhea.html

EXASCALE
COMPUTING
PROJECT

ECP

42

https://wdmapp.readthedocs.io/en/latest/machines/rhea.html
https://oaciss.uoregon.edu/e4s/inventory.html

Summary: E4S and SDKs as Platforms
e

Planning Transparent and collaborative requirements, analysis and design, Campaign-based portfolio planning coordinated with Facilities, vendors,
delivery community ecosystem, non-DOE partners

Implementation Leverage shared knowledge, infrastructure, best practices ID and assist product teams with cross-cutting issues

Cultivating Within a specific technical domain: Portability layers, LLVM Across delivery and deployment, with software teams, facilities’ staff

Community coordination, sparse solvers, etc.

Resolving issues, Performance bottlenecks and tricks, coordinated packaging and use Build system bugs and enhancements, protocols for triage, tracking &

sharing solutions of substrate, e.g., Desul for RAJA and Kokkos resolution, leverage across & beyond DOE

Improving quality Shared practice improvement, domain-specific quality policies, Portfolio-wide quality policies, documentation portal, portfolio testing on
reduced incidental differences and redundancies, per-commit Cl many platforms not available to developers
testing

Path-finding Exploration and development of leading-edge computational tools Exploration and development of leading-edge packaging and distribution
that provide capabilities and guidance for others tools and workflows that provide capabilities and guidance for others

Training Collaborative content creation and curation, coordinated training Portfolio installation and use, set up of build caches, turnkey and
events for domain users, deep, problem-focused solutions using portable installations, container and cloud instances
multiple products

Developer Increased community interaction, increased overhead (some devs Low-cost product visibility via doc portal, wide distribution via E4S as

experience question value), improved R&D exploration from-source/pre-installed/container environment

User experience Improve multi-product use, better APIs through improved design, Rapid access to latest stable feature sets, installation on almost any
easier understanding of what to use when HPC system, leadership to laptop

Scientific Software Shared knowledge of new algorithmic advances, licensing, build Programmatic cultivation of scientific software R&D not possible at

R&D tools, and more smaller scales

Community Attractive and collaborative community that attracts junior members Programmatic cultivation of community through outreach and funded

development to join opportunities that expand the membership possibilities

—
\\ EXASCARALE
) COMPUTING
\ PROJECT

43

Expanding the Value and Impact
of Software Ecosystems Going
Forward

Pre-E4S User Support Model

DOE App
Developers and
Facilities Users

App teams and facilities
support staff port and
debug app code

App teams work with
library/tool teams they
know, mostly local

DOE Facilities
User Support
Staff

DOE Library
and Tool
Developers

Facilities support staff have
difficulty finding support from
library/tool teams except from
local teams

Non-DOE users find it very

-
cesemBAl,,
......
.....
‘e

- Industry,

and Other /| basic usage

~.. | difficult to use DOE libraries
International | and tools. No support beyond

....
. .
. .
. .
. .
. .

45

E4S Phase 1 Support Model — Old relationships plus DOE E4S

DOE E4S Team enables a portfolio approach:

* Integrated delivery/support of libs/tools
- Single point of contact for planning and issues

DOE App
Developers and
Facilities Users

App teams worl k with
library/tool teams they
know, mostly local

DOE E4S Team DOE Facilities

User Support
Staff

Facilities support staff have
difficulty finding support from
S

DOE Libra ry :g:lr){élg;lsteam except from
and Tool
Developers

-

Non-DOE users find it very
difficult to use DOE libraries
-l

........ and tools. No support beyond
-------- basic usage
e,

- Industry,
International
and Other

‘e, .
. .
.~ .
.......

E4S Phase 2 Support Model — Previous plus commercial E4S

DOE App

Developers and =
Facilities Users et

DOE Facilities
User Support
Staff

DOE E4S Team I

D O E L I b ra ry Facilities support staff have
A
ibrary, ms except from
and Tool 7 | k&

Developers

.. —-l.‘.!.‘.-

Industry,
International
and Other

)
‘e
.
‘e
.
‘.
au

.y

Expanding the Scope of Cost and Benefit Sharing for DOE
Software Libraries and Tools

Support Phase | Primary Scope Primary Cost and Benefit Sharing Opportunities

Pre-E4S Local facility Local costs and benefits: Prior to ECP and E4S, libraries and tools
were typically strongly connected to the local facility: ANL libs and tools
at ALCF, LBL at NERSC, LLNL at Livermore Computing, etc.

+ ECP E4S All DOE facilities DOE complex-shared costs and benefits: ECP requires, and E4S
enables, interfacility availability and use of libs across all facilities: First-
class support of ANL libs and tools at other facilities, etc.

+ Commercial DOE facilities, Universal shared costs and benefits: Commercial support of E4S
E4S other US expands cost and benefit sharing to non-DOE entities: DOE costs are
agencies, lower, software hardening more rapid. US agencies, industry and others
industry, and can contract for support, gaining sustainable use of E4S software and
more contributing to its overall support.

48

49 I Observations for Trilinos and ECP E4S and the SDKs

ECP is large, structured, and spanning enough time to establish new software approaches
> Creation of a 3-tier software org and corresponding levels of software aggregation (product, SDK, E4S)
° Time enough to change culture and demonstrate value to stakeholders

Trilinos efforts are both part of E4S and the xXSDK and outside of them
° Majority of Trilinos funding is not ECP-related
> Benefits to being part of E4S and xSDK include
> Being part of a larger community
° Increased mindshare, recruiting new staff,
o Shared exploration of new topics (e.g;, mixed/multi-precision)
° Better ecosystem interoperability

> Costs of being part of E4S and xSDK include

> Opverheads of synchronizing, coordinating
> Complications from need for collaborative open-source development and mission security needs

Introducing a commercial partner facilitates:
> Universal cost and benefit sharing
> Off-loading of open testing to a non-Sandia partner
> Easier partnering with non-Sandia developers

Basic Strategies for GPUs

Performance portability

Portability strategy:

o Strategy 1: Isolate performance-impacting code to select kernels, write own CUDA, HIP, SYCL
o Strategy 2: Product uses Kokkos and RAJA as primary portability layers
° Blend 1 & 2: Provide both

° Notes:
> No ST products use OpenMP directly for GPU portability but
> Kokkos and RAJA have OpenMP backends as an option

Package NVIDIA GPU AMD GPU Intel GPU
=) ArborX support (Kokkos) ~ support (Kokkos) in progress (Kokkos-SYCL backend)
=) DTK support (Kokkos) ~ support (Kokkos) in progress (Kokkos-SYCL backend)
=enkgo swpport@DA) smport(B) sppert@PCe)
mmm) heFFTe support (CUDA) ~ support (HIP) ~ support (DPC++)
— hypre Support (CUDA, RAJA, Kokios) support (HIP) in progress (OPC++)

libEnsemble
=) MAGMA
= e Sport CUDA) sepot WP swport@PCr)
=> peTsc Support (CUDA | Kokios) support (HIP | Kokkos) i progress (DPC++ | Kokkos-SYCL
=== SLATE support (CUDA) support (HIP) ~in progress (DPC++)
m==) STRUMPACK support (CUDA) ~ support (HIP) in progress (SYCL, oneAPI)
= Sundiels | support (CUDA,RAJA) support (R RAI)
m==) SuperlU support (CUDA) ~ support (HIP) i progress (DPC++, oneAPl)
mm) Tasmanian

m==) Trilinos

in progress (Kokkos-SYCL backend)

The E4S Two-Step

Step 1:
> Migrate existing MPI-CPU code on top of EA4S:

o

o

o

o

All E4S libraries & tools compile & run well on CPU architectures, including multi-threading & (improving) vectorization
Pick a performance portability approach (as described above)

Rewrite your loops for parallel portability, e.g., rewrite in Kokkos or RAJA

Link against E4S CPU versions of relevant libraries

o Potential benefits:

o

o

o

Migrating to E4S on a stable computing platform, easy to migrate incrementally and detect execution diffs
Single build via Spack

Potential for using build caches (10x rebuild time improvement)

Single point of access to documentation

Increased quality of user experience via E4S support, E4S and SDK quality commitments

Preparation for Step 2...

The E4S Two-Step

Step 2: Turn on GPU build
° Builds with GPU backends (especially if using Kokkos or RAJA)
° Transition to GPU is a debugging and adaptation exercise
° Track growth in E4S GPU capabilities as E4S products improve GPU offerings

Consider interactions with E4S commercial support team
> Pay someone for support
> Get advice on product choices

> DOE teams generally can’t give you good advice on which solver or 1O library to use

o Like asking Microsoft and Apple to tell whether to purchase a PC or Mac

GPU Efforts Summary

One legacy of ECP & EA4S will be a SW stack that is portable across Nvidia, AMD, and Intel GPUS

Porting to modern GPUs requires almost everything to be done on the GPUs

Common refactoring themes:
> Async under collectives

> Batch execution
o Pre-allocation and highly concurrent assembly: Sparse matrix assembly via COO format with atomics

Two+hybrid portability models are used:
> Use portability layers: Kokkos, RAJA or (eventually) OpenMP w target offload (OpenACC?)

> Isolate and custom write: Isolate perf-portable kernels and write your own CUDA, HIP, SYCL backend
> Hybrid: Use portability layers, customize key kernels only

Explore low-precision arithmetic: Substantial benefit (and risks)

Rely more on third-party reusable libraries and tools.

Research Software Science

Expanding the skillset for producing & using scientific software

What is Research Software Science?

e Definition: Applying the scientific method to understanding and improving how software is developed and
used for research

— Scientific Method
* Use formal observation and experimentation to obtain & disseminate knowledge
e Current approach is ad hoc, engineered: See a problem, explore options to improve, pick one, move on
* Yes, there is software engineering research, so let’s call it science too
— Understanding and Improving
* Obtain data to detect correlation, design experiments to identify cause and effect
— Developed and Used
* Developer/User, User-only, individuals, teams, communities
» Leverage cognitive and social sciences
— Research
* Focus on software used in service of scientific advances

Researc h SW Science Michael Heroux (maherou@sandia.gov)

RSS Components

e Technical component

— Research software addresses highly technical domains
* Participation requires advanced degrees, on-going participation in domain community — significant time investment
e Reason why “off-the-shelf” software tools & processes often need adaptation, or may not address high-priority needs

e Social component
— Scientific software development and use are increasingly a team (and team of teams) activity
— Teams often composed of members who are unaware (and uninterested?) in exploring human factors
— Community engagement is increasingly important

* Cognitive component
— Research software community members are problem solvers, love new and challenging problems
— Are also sometimes described as “herds of cats”, resistant to prescriptive approaches

Researc h SW Science Michael Heroux (maherou@sandia.gov)

Expanding Software Team Skills: Research Software Science (RSS)

Key observation: We are scientists,
problem solvers. Let’s use science to

address our challenges!

Now: Improved SW environments Social & Cognitive
(Jupyter), integration of software /\ Specialists
specialists as team members, data

P + Data & SW

mining of repos Specialists

+ Math & CS
Specialists

Next: Research Software Science

- Use scientific method to understand,
improve development & use of
software for research.

- Incorporate cognitive & social
sciences.

Domain Science
Specialists

()
£
=

—

)

>
@)
4
=~
w

&

5
=

https://bssw.io/blog posts/research-software-science-a-scientific-approach-to-understanding-and-improving-how-we-develop-and-use-software-for-research

https://bssw.io/blog_posts/research-software-science-a-scientific-approach-to-understanding-and-improving-how-we-develop-and-use-software-for-research

First-of-a-kind US DOE Workshop

e The Science of Scientific-Software Development and Use
— Dec 13 -16, 2021
— https://www.orau.gov/SSSDU2021

 Workshop Brochure available:
— https://doi.org/10.2172/1846008

. Workshop Report n progress

— 3 Priority Research Directions The Science of

Development and Use

Investment in Software
is Investment in Science

| Research SW Science Michael Heroux (maherou@sandia.gov)

https://www.orau.gov/SSSDU2021
https://doi.org/10.2172/1846008

SSSDU Priority Research Directions

« PRD1: Develop methodologies and tools to comprehensively improve team-based scientific
software development and use Focus: Team Impact

- Key question: What practices, processes, and tools can help improve the development, sustainment,
evolution, and use of scientific software by teams?

« PRD2: Develop next-generation tools to enhance developer productivity and software
sustainability Focus: Developer Impact

- Key questions: How can we create and adapt tools to improve developer effectiveness and efficiency,
Software sustainability, and support for the continuous evolution of software? How can we support and
encourage the adoption of such tools by developers?

« PRD3: Develop methodologies, tools, and infrastructure for trustworthy software-intensive
science Focus: Societal Impact

- Key questions: How can we facilitate and encourage effective and efficient reuse of data and software
from third parties while ensuring the integrity of our software and the resulting science? How can we provide
flexible environments that “bake in” the tracking of software, provenance, and experiment management
required to support peer review and reproducibility?

SSSDU Cross-cutting Themes

e Theme 1: We need to consider both human and technical elements to better understand how to improve the
development and use of scientific software.

e Theme 2: We need to address urgent challenges in workforce recruitment and retention in the computing
sciences with growth through expanded diversity, stable career paths, and the creation of a community and
culture that attract and retain new generations of scientists.

 Theme 3: Scientific software has become essential to all areas of science and technology, creating
opportunities for expanded partnerships, collaboration, and impact.

Researc h SW Science Michael Heroux (maherou@sandia.gov)

Special Issue: IEEE Computing in Science and Engineering, May/June 2022

GUEST EDITORS' INTRODUCTION

Collegeville Workshop 2021: Scientific

Software Teams

Michael A. Heroux, St. John's University, Collegeville, MN, 56321, USA
Jeffrey C. Carver ®, University of Alabama, Tuscaloosa, AL, 35487, USA
Sarah Knepper, Intel Corporation, Hillsboro, OR, 97124, USA

e The PETSc Community as Infrastructure
Mark Adams, et. al.

* Challenges of and Opportunities for a Large Diverse Software Team
Cody J. Balos, et. al.

e Structured and Unstructured Teams for Research Software Development at the
Netherlands eScience Center
Carlos Martinez-Ortiz, et. al.

* Experiences Integrating Interns into Research Software Teams
Jay Lofstead

* In Their Shoes: Persona-Based Approaches to Software Quality Practice
Incentivization
M. R. Mundt, R. M. Milewicz, E. M. Raybourn

Collegeville Workshops on
Scientific Software

e Three Days:
— Experiences and Challenges
— Technical Approaches for Improvement

— Cultural Approaches for Improvement

* Themes:
— 2019: Sustainability
— 2020: Productivity
- 2021: Teams
— 2022: Skip due pandemic workforce challenges
— 2023: Design

2023 Collegeville Workshop on

Scientific Software
Software Design

July 24 - 27,2023
https://collegeville.github.io/CW23

Research SW Science Michael Heroux (maherou@sandia.gov)

Trends (I see) in Scientific Software that increase value of RSS

e Al-assisted development s
— Elevated thinking — intent to C++ @ tO bnlne
— Not unlike C++ to machine code
— Fewer programmers? Maybe GitHub
— Opportunity: More emphasis on purpose & design ' COp“Ot

e Deeper awareness of technology and society
— Software systems adapted to fit scientists
— Broaden usability, accessibility, impact

e UX applied to scientific software products
— Personas & journey stories — not new
— Applied to scientific software teams of developer-users — less common?

— Just getting started

Research SW Science Michael Heroux (maherou@sandia.gov)

64

Opportunities for Trilinos 2022 - 2030

The ECP has demonstrated the potential of a sustained open-source software organization to:
° Deliver DOE ASCR R&D to users, facilities, vendors and the open-source community via a curated software portfolio
> Grow the next generation workforce
° Address growing reliance on software as first-class entity

° Raise the quality of the software we provide

Software platforms like GitHub, Spack, containers provide unprecedented opportunities to accelerate scientific progress:
° Tools and workflows enable rich collaboration
o EA4S, the SDKs, and Spack binary caches will transform our ability to use rich software ecosystems

> Cloud environments will be major HPC resource

Next generation software teams need to include skills in cognitive and social sciences
° Many future challenges and opportunities for scientific progress are about people and technology

> As computational scientists we can appreciate the role of science to inform and improve how we develop and use software to do research

The path to HPC success is through execution on heterogeneous devices
> Solving the problem of utilizing multiple homogeneous GPU devices is just the first step
o ECP helps toward portability across multiple vendor GPU offerings, but there is so much more to come

The Trilinos team can be a leader among peers in establishing this organization
> Trilinos on top of Kokkos is well positioned to rapidly adapt to future emerging devices

o Trilinos team has deep knowledge and experience in key areas needed for organization success

° Trilinos team in a privileged position to explore the critical need for software quality assurance while “Working in Public”

65 | Opportunities for Trilinos 2031 — 2040

Programming by intent
> GitHub CoPilot and Amazon CodeWhisperer
> Programmer coaches the Al to produce code

> Programmer focus is on requirements, design, test definitions

ML replacements for physics source code
° Lines of C++ replaced by Neural Network graph weights
° Key kernel: Matrix multiplication

Software design starts with thorough user-developer requirements gathering and analysis
° Leverage knowledge and skills from social and cognitive sciences
> Focus on making people most productive

Overall theme:
> Domain knowledge becomes increasingly important

> Mechanics of producing code become less important

Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology and Engineering Solutions
of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc,,

for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA0003525.

©) 2022

