
P R E S E N T E D B Y

Sandia National Laboratories is a
multimission laboratory managed and
operated by National Technology and

Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell International

Inc. for the U.S. Department of Energy’s
National Nuclear Security Administration

under contract DE-NA0003525.

Leadership Scientific Software Trends
from 2000 – 2040 Through the Lens of
the Trilinos Project

Michae l Heroux

Brief history of my experience

◦ Started parallel programming with Fortran and Q8 calls on CDC Cyber 205
◦ Wrote Cray LIBSCI code for BLAS, LAPACK, sparse solvers, FFTs in Fortran/CAL
◦ Wrote code for industry apps FIDAP, FLUENT, STAR-CD for vector/MPP machines
◦ Founder of Trilinos, Mantevo, HPCG projects
◦ Founder of original Kokkos – initial use of execution patterns, breaking of storage association.
◦ Architect of E4S, xSDK – Exascale Computing Project (ECP) software ecosystems
◦ Director of Software Technology for ECP – Broad visibility into 70+ next-gen products

Brief Trilinos History

2001 – 2009
2010 – 2016
2017 – Now

Some Trilinos History4

Trilinos started in December 2001
◦ Fun fact: The first Trilinos commit was on Fri Dec 14 22:43:40 2001
◦ While the command `commit log --reverse` shows the first Trilinos commit was on Fri Feb 13 23:00:10 1998,

this is a commit preserved from the partitioning package Zoltan that was integrated into Trilinos years later
◦ There are similar commits for the multigrid package ML

The “Tri” in Trilinos was determined by the intent for three packages, there are now 50+ packages

Trilinos phases:
◦ Started with the Epetra stack: MPI-only, double precision arithmetic, up to 2B equations
◦ New stack based on Tpetra: MPI+Kokkos, templated precisions, arbitrary problem size

Trilinos-Kokkos/KokkosKernels relationship:
◦ Kokkos started in Trilinos: Extracted to support users who don’t need solvers, and those who do
◦ Kokkos and KokkosKernels snapshotted into Trilinos regularly

Motivation For Trilinos
§ Sandia does LOTS of solver work.
§ When I started at Sandia in May 1998:

w Aztec was a mature package. Used in many codes.

w FETI, PETSc, DSCPack, Spooles, ARPACK, DASPK, and many
other codes were (and are) in use.

w New projects were underway or planned in multi-level
preconditioners, eigensolvers, non-linear solvers, etc…

§ The challenges:
w Little or no coordination was in place to:

• Efficiently reuse existing solver technology.
• Leverage new development across various projects.
• Support solver software processes.
• Provide consistent solver APIs for applications.

w ASCI was forming software quality assurance/engineering
(SQA/SQE) requirements:

• Daunting requirements for any single solver effort to address alone.

TUG 20
03

Evolving Trilinos Solution
§ Trilinos1 is an evolving framework to address these challenges:

w Fundamental atomic unit is a package.

w Includes core set of vector, graph and matrix classes (Epetra/Tpetra packages).

w Provides a common abstract solver API (Thyra package).

w Provides a ready-made package infrastructure (new_package package):

• Source code management (cvs, bonsai).
• Build tools (autotools).
• Automated regression testing (queue directories within repository).
• Communication tools (mailman mail lists).

w Specifies requirements and suggested practices for package SQA.

§ In general allows us to categorize efforts:
w Efforts best done at the Trilinos level (useful to most or all packages).

w Efforts best done at a package level (peculiar or important to a package).

w Allows package developers to focus only on things that are unique to

their package.

1. Trilinos loose translation: “A string of pearls”

TUG 20
03

Trilinos Strategic Goals
§ Scalable Solvers: As problem size and processor counts increase,

the cost of the solver will remain a nearly fixed percentage of the
total solution time.

§ Hardened Solvers: Never fail unless problem essentially
unsolvable, in which case we diagnose and inform the user why the
problem fails and provide a reliable measure of error.

§ Full Vertical Coverage: Provide leading edge capabilities from
basic linear algebra to transient and optimization solvers.

§ Universal Interoperability: All Trilinos packages will be
interoperable, so that any combination of solver packages that
makes sense algorithmically will be possible within Trilinos.

§ Universal Solver RAS: Trilinos will be:

w Integrated into every major application at Sandia (Availability).
w The leading edge hardened, efficient, scalable solutions for each of

these applications (Reliability).
w Easy to maintain and upgrade within the application environment

(Serviceability).

Algorithmic

Goals

Software

Goals

TUG 20
05

Trilinos Packages

§ Trilinos is a collection of Packages.
§ Each package is:

w Focused on important and state-of-the-art algorithms in its problem

regime.

w Developed by a small team of domain experts.

w Self-contained: No (or minimal) explicit dependencies on any

other software packages (with some special exceptions).

w Configurable/buildable/documented on its own.

§ Sample packages: NOX, AztecOO, IFPACK.
§ Special packages: Epetra, TSF, Teuchos.

TUG 20
03

Greek Names
ACTS Tuto

rial
 20

05

Day 1 of Package Life
§ CVS: Each package is self-contained in Trilinos/package/ directory.

§ Bugzilla: Each package has its own Bugzilla product.

§ Bonsai: Each package is browsable via Bonsai interface.

§ Mailman: Each Trilinos package, including Trilinos itself, has four mail
lists:

w package-checkins@software.sandia.gov
• CVS commit emails. “Finger on the pulse” list.

w package-developers@software.sandia.gov
• Mailing list for developers.

w package-users@software.sandia.gov
• Issues for package users.

w package-announce@software.sandia.gov
• Releases and other announcements specific to the package.

§ New_package (optional): Customizable boilerplate for

w Autoconf/Automake/Doxygen/Python/Thyra/Epetra/TestHarness/Website

TUG 20
05

Sample Package Maturation Process
Step Example

Package added to CVS: Import existing code or start
with new_package.

ML CVS repository migrated into Trilinos (July 2002).

Mail lists, Bugzilla Product, Bonsai database
created.

ml-announce, ml-users, ml-developers, ml-checkins, ml-
regression @software.sandia.gov created, linked to CVS (July
2002).

Package builds with configure/make, Trilinos-
compatible

ML adopts Autoconf, Automake starting from new_package
(June 2003).

Epetra objects recognized by package. ML accepts user data as Epetra matrices and vectors (October
2002).

Package accessible via Thyra interfaces. ML adaptors written for TSFCore_LinOp (Thyra) interface
(May 2003).

Package uses Epetra for internal data. ML able to generate Epetra matrices. Allows use of AztecOO,
Amesos, Ifpack, etc. as smoothers and coarse grid solvers (Feb-
June 2004).

Package parameters settable via Teuchos
ParameterList

ML gets manager class, driven via ParameterLists (June 2004).

Package usable from Python (PyTrilinos) ML Python wrappers written using new_package template
(April 2005).

Startup Steps Maturation Steps

TUG 20
05

Trilinos Interoperability Mechanisms

§ M1: Package accepts user data as Epetra objects.

§ M2: Package can be used via TSF abstract solver classes.

§ M3: Package can use Epetra for private data.

§ M4: Package accesses solver services via TSF interfaces.

§ M5: Package builds under Trilinos configure scripts.

TUG 20
05

Interoperability Example: AztecOO

§ AztecOO: Preconditioned Krylov Solver Package.

§ Primary Developer: Mike Heroux.

§ Minimal explicit, essential dependence on other Trilinos packages.

w Uses abstract interfaces to matrix/operator objects.
w Has independent configure/build process (but can be invoked at Trilinos level).
w Sole dependence is on Epetra (but easy to work around).

§ Interoperable with other Trilinos packages:

w Accepts user data as Epetra matrices/vectors.
w Can use Epetra for internal matrices/vectors.
w Can be used via TSF abstract interfaces.
w Can be built via Trilinos configure/build process.
w Can provide solver services for NOX.
w Can use IFPACK, ML or AztecOO objects as preconditioners.

TUG 20
05

Observations from Trilinos 2001 - 2009

Focus on creating a federation to address numerous stakeholder issues:

◦ Bringing independent teams together to address software quality requirements
◦ Provide community for inter-dependent development teams
◦ Provide a single collection of libraries for users
◦ Retain small team ability for name recognition, autonomy at local level
◦ Provide a large-scale product portfolio that sponsors can track, assess and talk about

Provide software platform:

◦ Common tools, processes and infrastructure
◦ Interoperable components for each other to use
◦ Ready-made NewPackage to kickstart a new effort
◦ Technical engagement with application teams
◦ Common data services API via Epetra abstract classes (e.g., Epetra_Operator)

Many of these attributes have modern replacements:

◦ Kokkos/KokkosKernels/Tpetra
◦ GitHub repos, tools, workflows
◦ TriBITS/CMake and Spack

Expanding the Trilinos Developer Community15

2010 –Focus on transition to community project
◦ Permissive license for easier corporate interactions
◦ Contributor agreements for non-Sandia members
◦ Website with non-Sandia and non-gov root
◦ Open repository
◦ Tremendous effort and commitment to make real

The Transition to GitHub16

Never migrated to SVN

EuroTUG as external collaboration diagnostic
17

EuroTUG meeting series has been around since 2012:

◦ 2012 in Lausanne, Switzerland
◦ 2013 in Munich, Germany
◦ 2014 in Lugano, Switzerland
◦ 2015 in Paris, France
◦ 2016 in Garching, Germany
◦ 2019 in Zurich, Switzerland
◦ 2022 virtually in Munich, Germany

Recent challenges (starting in 2015 or so):

◦ Dev team focused on GPUs
◦ Heavy technical co-design work
◦ Disruptive usage model

◦ Many users not ready for GPU investment
◦ Ubiquitous, disruptive code changes
◦ GPU benefits for sparse codes only modest

Presently:

◦ Trilinos more ready for broad user group
◦ Users must transition to GPUs for performance

Time to renew outreach:

◦ Virtual and on-demand
◦ In-person as circumstances permit

June 5, 2012 EuroTUG, EPFL, Lausanne, Switzerland

Observations from Trilinos 2010 - 2016

Focus on expanding communities:

◦ Developers outside of Sandia
◦ Users outside of Sandia

Mature software products:

◦ Good documentation
◦ Lots of examples
◦ Very powerful compositional capabilities for multi-physics
◦ Rich capabilities for circuits
◦ MPI-only

Transition to new tools:

◦ CMake (via TriBITS)
◦ Git and GitHub
◦ External web presence

This version of Trilinos is still widely used today

New Package: Kokkos
§ Very new project.
§ Goal:

w Isolate key non-BLAS kernels for the purposes of optimization.

§ Kernels:
w Dense vector/multivector updates and collective ops (not in BLAS).

w Sparse MV, MM, SV, SM.

§ Serial-only for now.
§ Reference implementation provided.
§ Mechanism for improving performance:

w Default is aggressive compilation of reference source.

w BeBOP: Jim Demmel, Kathy Yelick, Rich Vuduc, UC Berkeley.

w Vector version: Cray.

TUG 20
03

20 Managed by UT-Battelle
for the U.S. Department of Energy Large-Scale Software For Generic Multi-core Nodes

Example Kernels: axpy() and dot()
template <class WDP>
void
Node::parallel_for(int beg, int end,

WDP workdata);

template <class WDP>
WDP::ReductionType
Node::parallel_reduce(int beg, int end,

WDP workdata);

template <class T>
struct AxpyOp {

const T * x;
T * y;
T alpha, beta;
void execute(int i)
{ y[i] = alpha*x[i] + beta*y[i]; }

};

template <class T>
struct DotOp {

typedef T ReductionType;
const T * x, * y;
T identity() { return (T)0; }
T generate(int i) { return x[i]*y[i]; }
T reduce(T x, T y) { return x + y; }

};

AxpyOp<double> op;
op.x = ...; op.alpha = ...;
op.y = ...; op.beta = ...;
node.parallel_for< AxpyOp<double> >

(0, length, op);

DotOp<float> op;
op.x = ...; op.y = ...;
float dot;
dot = node.parallel_reduce< DotOp<float> >

(0, length, op);

SIAM PP10

Bake
r &

 Hero
ux

21 Managed by UT-Battelle
for the U.S. Department of Energy Large-Scale Software For Generic Multi-core Nodes

Hybrid Timings (Tpetra)
• Tests of a simple iterations:

• power method: one sparse mat-vec, two vector operations

• conjugate gradient: one sparse mat-vec, five vector operations

• DNVS/x104 from UF Sparse Matrix
Collection (100K rows, 9M entries)

• NCCS/ORNL Lens node includes:

• one NVIDIA Tesla C1060

• one NVIDIA 8800 GTX

• Four AMD quad-core CPUs

• Results are very tentative!

• suboptimal GPU traffic

• bad format/kernel for GPU

• bad data placement for threads

Node PM
(mflop/s)

CG
(mflop/s)

Single thread 140 614

8800 GPU 1,172 1,222

Tesla GPU 1,475 1,531

Tesla + 8800 981 1,025

16 threads 816 1,376
1 node
15 threads + Tesla 867 1,731
2 nodes
15 threads + Tesla 1,677 2,102

SIAM PP10

Bake
r &

 Hero
ux

22
Kokkos Ecosystem for Performance Portability

Kokkos Ecosystem addresses complexity of supporting numerous

many/multi-core architectures that are central to DOE HPC enterprise

202
1 A

lph
abe

t Ta
lk

S. R
aja

mani
cka

m

Observations from Trilinos 2017 - now23

The move to accelerator platforms has been incredibly disruptive for everyone:
◦ Change in execution model (scale inward, discrete memory, new ISAs, new programming models, etc)
◦ New algorithms, aggregated applications
◦ New vendor hardware and software products
◦ Ubiquitous change to application source code

Demands a vertical co-design/development from vendor to libraries to applications

Result is an inward focus:
◦ Work with teams who are funded to work together and paid to embrace disruption
◦ Others must wait for new functionality and documentation until intensive design and development efforts

stabilize

Still in this phase, but approaching its end
◦ EuroTUG 2022 is evidence we are emerging from an inward focus
◦ Lots of work to assist users in migrating to GPUs

Expanding the DOE Open-
Source Software Ecosystem:
ECP and E4S

25

DOE HPC Roadmap to Exascale Systems

Version 2.0

26

Heterogeneous accelerated-node computing
Accelerated node computing: Designing, implementing, delivering, & deploying advanced
agile software that effectively exploits heterogeneous node hardware

• Execute on the largest systems … AND on today and tomorrow’s laptops, desktops, clusters, …

• We view accelerators as any compute hardware specifically designed to accelerate certain mathematical
operations (typically with floating point numbers) that are typical outcomes of popular and commonly used
algorithms. We often use the term GPUs synonymously with accelerators.

Diagram credit:
Andrew Siegel

Text credit: Doug Kothe

Ref: A Gentle Introduction to GPU Programming, Michele Rosso and Andrew Myers, May 2021

First Exascale system
Frontier is available

https://bssw.io/blog_posts/a-gentle-introduction-to-gpu-programming

27

ST L4 Teams

- WBS
- Name
- PIs
- PCs - Project
Coordinators

WBS WBS Name CAM/PI PC
2.3 Software Technology Heroux, Mike, McInnes, Lois
2.3.1 Programming Models & Runtimes Thakur, Rajeev
2.3.1.01 PMR SDK Shende, Sameer Shende, Sameer
2.3.1.07 Exascale MPI (MPICH) Guo, Yanfei Guo, Yanfei
2.3.1.08 Legion McCormick, Pat McCormick, Pat
2.3.1.09 PaRSEC Bosilica, George Carr, Earl
2.3.1.14 Pagoda: UPC++/GASNet for Lightweight Communication and Global Address Space Support Hargrove, Paul Hargrove, Paul
2.3.1.16 SICM Lang, Michael Vigil, Brittney
2.3.1.17 OMPI-X Bernholdt, David Grundhoffer, Alicia
2.3.1.18 RAJA/Kokkos Trott, Christian Robert Prince, Kellsie
2.3.1.19 Argo: Low-level resource management for the OS and runtime Beckman, Pete Gupta, Rinku
2.3.2 Development Tools Vetter, Jeff
2.3.2.01 Development Tools Software Development Kit Miller, Barton Tim Haines
2.3.2.06 Exa-PAPI++: The Exascale Performance Application Programming Interface with Modern C++Dongarra, Jack Jagode, Heike
2.3.2.08 Extending HPCToolkit to Measure and Analyze Code Performance on Exascale Platforms Mellor-Crummey, John Meng, Xiaozhu
2.3.2.10 PROTEAS-TUNE Vetter, Jeff Glassbrook, Dick
2.3.2.11 SOLLVE: Scaling OpenMP with LLVm for Exascale Chapman, Barbara Kale, Vivek
2.3.2.12 FLANG McCormick, Pat Perry-Holby, Alexis
2.3.3 Mathematical Libraries Li, Sherry
2.3.3.01 Extreme-scale Scientific xSDK for ECP Yang, Ulrike Yang, Ulrike
2.3.3.06 Preparing PETSc/TAO for Exascale Munson, Todd Munson, Todd
2.3.3.07 STRUMPACK/SuperLU/FFTX: sparse direct solvers, preconditioners, and FFT libraries Li, Sherry Li, Sherry
2.3.3.12 Enabling Time Integrators for Exascale Through SUNDIALS/ Hypre Woodward, Carol Woodward, Carol
2.3.3.13 CLOVER: Computational Libraries Optimized Via Exascale Research Dongarra, Jack Carr, Earl
2.3.3.14 ALExa: Accelerated Libraries for Exascale/ForTrilinos Turner, John Grundhoffer, Alicia
2.3.3.15 Sake: Scalable Algorithms and Kernels for Exascale Rajamanickam, Siva Prince, Kellsie
2.3.4 Data and Visualization Ahrens, James
2.3.4.01 Data and Visualization Software Development Kit Atkins, Chuck Bagha, Neelam
2.3.4.09 ADIOS Framework for Scientific Data on Exascale Systems Klasky, Scott Grundhoffer, Alicia
2.3.4.10 DataLib: Data Libraries and Services Enabling Exascale Science Ross, Rob Ross, Rob
2.3.4.13 ECP/VTK-m Moreland, Kenneth Moreland, Kenneth
2.3.4.14 VeloC: Very Low Overhead Transparent Multilevel Checkpoint/Restart/Sz Cappello, Franck Ehling, Scott
2.3.4.15 ExaIO - Delivering Efficient Parallel I/O on Exascale Computing Systems with HDF5 and Unify Byna, Suren Bagha, Neelam
2.3.4.16 ALPINE: Algorithms and Infrastructure for In Situ Visualization and Analysis/ZFP Ahrens, James Turton, Terry
2.3.5 Software Ecosystem and Delivery Munson, Todd
2.3.5.01 Software Ecosystem and Delivery Software Development Kit Willenbring, James M Willenbring, James M
2.3.5.09 SW Packaging Technologies Gamblin, Todd Gamblin, Todd
2.3.5.10 ExaWorks Laney, Dan Laney, Dan
2.3.6 NNSA ST Mohror, Kathryn
2.3.6.01 LANL ATDM Mike Lang Vandenbusch, Tanya Marie
2.3.6.02 LLNL ATDM Becky Springmeyer Gamblin, Todd
2.3.6.03 SNL ATDM Jim Stewart Prince, Kellsie

ECP ST Stats

- 35 L4 subprojects
- ~27% ECP budget

•~250 staff

• ~70 products

• 35 teams

• ~30 universities

• ~9 DOE labs

• 6 technical areas

• 1 focus area of 3 in ECP

28

We work on products applications need now and into the future

Example Products Engagement

MPI – Backbone of HPC apps Explore/develop MPICH and OpenMPI new features & standards

OpenMP/OpenACC –On-node parallelism Explore/develop new features and standards

Performance Portability Libraries Lightweight APIs for compile-time polymorphisms

LLVM/Vendor compilers Injecting HPC features, testing/feedback to vendors

Perf Tools - PAPI, TAU, HPCToolkit Explore/develop new features

Math Libraries: BLAS, sparse solvers, etc. Scalable algorithms and software, critical enabling technologies

IO: HDF5, MPI-IO, ADIOS Standard and next-gen IO, leveraging non-volatile storage

Viz/Data Analysis ParaView-related product development, node concurrency

Key themes:
• Focus: GPU node architectures and advanced memory & storage technologies
• Create: New high-concurrency, latency tolerant algorithms
• Develop: New portable (Nvidia, Intel, AMD GPUs) software product
• Enable: Access and use via standard APIs
Software categories:
• Next generation established products: Widely used HPC products (e.g., MPICH, OpenMPI, Trilinos)
• Robust emerging products: Address key new requirements (e.g., Kokkos, RAJA, Spack)
• New products: Enable exploration of emerging HPC requirements (e.g., SICM, zfp, UnifyCR)

Legacy: A stack that
enables performance
portable application
development on
leadership platforms

Software Platforms: “Working in Public” Nadia Eghbal

Platforms in the software world are digital environments that intend to improve
the value, reduce the cost, and accelerate the progress of the people and teams
who use them

Platforms can provide tools, workflows, frameworks, and cultures that provide a
(net) gain for those who engage

Eghbal Platforms:

Trilinos has been several of these types of platforms over time, but none is a
perfect fit

Eghbal, Nadia. Working in Public: The Making and Maintenance of Open Source Software (p. 60). Stripe Press. Kindle Edition.

30

About Platforms and ECP

• The ECP is commissioned to provide new scientific software capabilities on the frontier of
algorithms, software and hardware

• The ECP uses platforms to foster collaboration and cooperation as we head into the frontier

• The ECP has two primary software platforms:
– E4S: a comprehensive portfolio of ECP-sponsored products and dependencies
– SDKs: Domain-specific collaborative and aggregate product development of similar capabilities

31

Delivering an open, hierarchical software ecosystem

E4S
Source: ECP E4S team; Non-ECP Products (all dependencies)
Delivery: spack install e4s; containers; CI Testing

SDKs
Source: SDK teams; Non-ECP teams (policy compliant, spackified)
Delivery: Apps directly; spack install sdk; future: vendor/facility

ST
Products Source: ECP L4 teams; Non-ECP Developers; Standards Groups

Delivery: Apps directly; spack; vendor stack; facility stack

Levels of Integration Product Source and Delivery

• Group similar products
• Make interoperable
• Assure policy compliant
• Include external products

• Build all SDKs
• Build complete stack
• Containerize binaries

• Standard workflow
• Existed before ECP

ECP ST Open Product Integration Architecture

ECP ST Individual Products

32

xSDK: Primary delivery mechanism for ECP
math libraries’ continual advancements

ECP Math
libraries

Performance
on new node
architectures

Extreme
strong

scalability

Advanced,
coupled

multiphysics,
multiscale

Optimization,
UQ, solvers,

discretizations

Interoperability,
complementarity:

xSDK

Improving library
quality,

sustainability,
interoperability

Next-generation
algorithms

Advances in data
structures for new

node
architectures

Toward
predictive
scientific

simulations

Increasing
performance,

portability,
productivity

xSDK release
1

xSDK release
2

xSDK release
n…..Timeline:

As motivated and validated by
the needs of ECP applications:

xSDK release 0.7.0
(Nov 2021)

hypre
PETSc/TAO
SuperLU
Trilinos
AMReX
ArborX
ButterflyPACK
DTK
Ginkgo
heFFTe
libEnsemble
MAGMA
MFEM
Omega_h
PLASMA
PUMI
SLATE
Tasmanian
SUNDIALS
Strumpack
Alquimia
PFLOTRAN
deal.II
preCICE
PHIST
SLEPc

from the
broader
community

Ref: xSDK: Building an Ecosystem of Highly Efficient Math Libraries for Exascale, SIAM News, Jan 2021

xSDK lead: Ulrike Meier Yang (LLNL)
xSDK release lead: Satish Balay (ANL)

https://sinews.siam.org/Details-Page/xsdk-building-an-ecosystem-of-highly-efficient-math-libraries-for-exascale

33

An SDK Maturity Model or, The Benefits of Coop-etition

Scenario: Two Product Teams in the Same SDK (e.g., math libs SDK aka xSDK)

Level 0:
Their software
approach is nuts!

Level 1:
They seem to
have some good
ideas…

Level 2:
Let’s do some
joint planning
and tutorials

Level 3:
Let’s explore
multi-precision
algorithms for
GPUs together

34

Step 1: Concurrent exploration of the algorithm and software space

• In cross-laboratory expert teams, we focus on:
– Mixed precision dense direct solvers (MAGMA and SLATE);
– Mixed precision sparse direct solvers (SuperLU);
– Mixed precision multigrid (on a theoretical level and in hypre);

– Mixed precision FFT (heFFTE);
– Mixed precision preconditioning (Ginkgo, Trilinos);
– Separating the arithmetic precision from the memory precision (Ginkgo);
– Mixed precision Krylov solvers (theoretical analysis, Ginkgo, Trilinos);

• Mixed precision algorithms acknowledge and boost the GPU usage
– Algorithm development primarily focuses on GPU hardware (Summit, Frontier);

– Latest evaluations on NVIDIA A100 (Perlmutter), AMD MI100 (Spock), Intel Gen9 GPU

• Integrating mixed precision technology as production-ready implementation into
ECP software products allows for the smooth integration into ECP applications.

35

Step 2: Incorporate lessons learned into library ecosystem

For library interoperability and mixed precision usage:

• PETSc develops an abstraction layer to device solvers (vendor libraries, Kokkos Kernels, etc.)
that allows flexible composition of Krylov solves in mixed-precision;

• hypre already supports the compilation in different precisions and work now focuses on
compiling multiple precisions at a time to compose algorithms out of routines running in
different precision formats;

• Ginkgo makes the “memory accessor” integration-ready for other software libraries;

• Kokkos and KokkosKernels implements support for compiling in IEEE754 half precision;

• SLATE contains mixed precision algorithms and templates the working precision; and

• MAGMA compiles in different precisions (z,c,d,s).

36

Takeaways from SDKs

• Establish coop-etition:
– Lower-cost comparison of products, increased incentives for improvement
– Encourages SDK participation: learn from each other, be in the know

• Lead to community growth:
– Humanizes the other teams
– Exposes opportunities to share strengths

• Retain autonomy of SDK member teams
– Each team makes its own informed decisions
– Better decisions from shared study of new ideas

• Challenges
– Coordination has overhead, some developers don’t see the net benefit
– Poor habits can spill over (but so can good ones)

• Bottom line: SDKs as we define them:
– Are platforms to support open, collaborative scientific discovery across teams
– Make sharing and cooperation, which are fundamental to science, easier to realize

37

Extreme-scale Scientific Software Stack (E4S)

• E4S: HPC software ecosystem – a curated software portfolio
• A Spack-based distribution of software tested for interoperability

and portability to multiple architectures
• Available from source, containers, cloud, binary caches

• Leverages and enhances SDK interoperability thrust
• Not a commercial product – an open resource for all
• Growing functionality: Aug 2022: E4S 22.08 – 100+ full release products

https://e4s.io
E4S lead: Sameer Shende (U Oregon)

• ARM64 systems with NVIDIA GPUs
• Base and full featured container images targeting

three GPU architectures (Intel, AMD, NVIDIA)
• Base images may be used to build custom

containers and support GPUs
• New versions of AI/ML frameworks TensorFlow and

PyTorch optimized for GPUs on all three
architectures: x86_64, ppc64le, and aarch64.

https://spack.io
Spack lead: Todd Gamblin (LLNL)

Community Policies
Commitment to SW quality

DocPortal
Single portal to all
E4S product info

Portfolio testing
Especially leadership

platforms

Curated collection
The end of dependency hell

Quarterly releases
Release 22.2 – February

Build caches
10X build time
improvement

Turnkey stack
A new user experience https://e4s.io Post-ECP Strategy

LSSw, ASCR Task Force

E4S 22.08
Highlights

https://e4s.io/
https://spack.io/
https://e4s.io/

38

Download E4S 22.05 GPU Container Images: NVIDIA, AMD, Intel

https://e4s.io

• Separate full featured
Singularity images for 3 GPU
architectures

• GPU base images for
– x86_64 (Intel, AMD, NVIDIA)
– ppc64le
– aarch64

39

Policies: Version 1

https://e4s-project.github.io/policies.html

• P1: Spack-based Build and Installation

• P2: Minimal Validation Testing

• P3: Sustainability

• P4: Documentation

• P5: Product Metadata
• P6: Public Repository

• P7: Imported Software

• P8: Error Handling

• P9: Test Suite

E4S Community Policies: A commitment to quality improvement

We welcome feedback. What policies make sense for your software?

• Purpose: Enhance sustainability and
interoperability

• Will serve as membership criteria for E4S
– Membership is not required for inclusion in E4S

– Also includes forward-looking draft policies

• Modeled after xSDK community policies
• Multi-year effort led by SDK team

– Included representation from across ST
– Multiple rounds of feedback incorporated from

ST leadership and membership

SDK lead: Jim Willenbring (SNL)

https://e4s-project.github.io/policies.html

40

E4S DocPortal

• Single point of access

• All E4S products

• Summary Info
– Name
– Functional Area
– Description
– License

• Searchable

• Sortable

• Rendered daily from repos

https://e4s-project.github.io/DocPortal.html

All we need from the software team is

a repo URL + up-to-date meta-data files

https://e4s-project.github.io/DocPortal.html

41

Goal: All E4S product documentation accessible from single portal on E4S.io
(working mock webpage below)

https://e4s-project.github.io/DocPortal.html

https://e4s-project.github.io/DocPortal.html

42

Speeding up bare-metal installs using the E4S build cache

https://wdmapp.readthedocs.io/en/latest/machines/rhea.html

E4S Spack build cache:

• Fusion plasma:
• WDMapp added E4S mirror

• Speedup: 10X

• Turbine wind plant:
• ExaWind (Nalu-Wind)

• 6 minutes with build cache
• Up to 4 hours without

Special thanks
to Sameer
Shende,

WDMapp and
ExaWind teams

• 88,000+ binaries
• S3 mirror
• No need to build

from source code!

https://oaciss.uoregon.edu/e4s/inventory.html

https://wdmapp.readthedocs.io/en/latest/machines/rhea.html
https://oaciss.uoregon.edu/e4s/inventory.html

43

Summary: E4S and SDKs as Platforms

Activity SDKs E4S

Planning Transparent and collaborative requirements, analysis and design,
delivery

Campaign-based portfolio planning coordinated with Facilities, vendors,
community ecosystem, non-DOE partners

Implementation Leverage shared knowledge, infrastructure, best practices ID and assist product teams with cross-cutting issues

Cultivating
Community

Within a specific technical domain: Portability layers, LLVM
coordination, sparse solvers, etc.

Across delivery and deployment, with software teams, facilities’ staff

Resolving issues,
sharing solutions

Performance bottlenecks and tricks, coordinated packaging and use
of substrate, e.g., Desul for RAJA and Kokkos

Build system bugs and enhancements, protocols for triage, tracking &
resolution, leverage across & beyond DOE

Improving quality Shared practice improvement, domain-specific quality policies,
reduced incidental differences and redundancies, per-commit CI
testing

Portfolio-wide quality policies, documentation portal, portfolio testing on
many platforms not available to developers

Path-finding Exploration and development of leading-edge computational tools
that provide capabilities and guidance for others

Exploration and development of leading-edge packaging and distribution
tools and workflows that provide capabilities and guidance for others

Training Collaborative content creation and curation, coordinated training
events for domain users, deep, problem-focused solutions using
multiple products

Portfolio installation and use, set up of build caches, turnkey and
portable installations, container and cloud instances

Developer
experience

Increased community interaction, increased overhead (some devs
question value), improved R&D exploration

Low-cost product visibility via doc portal, wide distribution via E4S as
from-source/pre-installed/container environment

User experience Improve multi-product use, better APIs through improved design,
easier understanding of what to use when

Rapid access to latest stable feature sets, installation on almost any
HPC system, leadership to laptop

Scientific Software
R&D

Shared knowledge of new algorithmic advances, licensing, build
tools, and more

Programmatic cultivation of scientific software R&D not possible at
smaller scales

Community
development

Attractive and collaborative community that attracts junior members
to join

Programmatic cultivation of community through outreach and funded
opportunities that expand the membership possibilities

Expanding the Value and Impact
of Software Ecosystems Going
Forward

45

Pre-E4S User Support Model

DOE App
Developers and
Facilities Users

DOE Library
and Tool

Developers

DOE Facilities
User Support

Staff

App teams and facilities
support staff port and
debug app code

Facilities support staff have
difficulty finding support from
library/tool teams except from
local teams

App teams work with
library/tool teams they
know, mostly local

Industry,
International
and Other

Agency users

Non-DOE users find it very
difficult to use DOE libraries
and tools. No support beyond
basic usage

46

E4S Phase 1 Support Model – Old relationships plus DOE E4S

DOE App
Developers and
Facilities Users

DOE Library
and Tool

Developers

DOE Facilities
User Support

Staff

App teams and facilities
support staff port and
debug app code

Facilities support staff have
difficulty finding support from
library/tool teams except from
local teams

App teams work with
library/tool teams they
know, mostly local

Industry,
International
and Other

Agency users

Non-DOE users find it very
difficult to use DOE libraries
and tools. No support beyond
basic usage

DOE E4S Team

DOE E4S Team enables a portfolio approach:
• Integrated delivery/support of libs/tools
• Single point of contact for planning and issues

47

E4S Phase 2 Support Model – Previous plus commercial E4S

DOE App
Developers and
Facilities Users

DOE Library
and Tool

Developers

DOE Facilities
User Support

Staff

App teams and facilities
support staff port and
debug app code

Facilities support staff have
difficulty finding support from
library/tool teams except from
local teams

App teams work with
library/tool teams they
know, mostly local

Industry,
International
and Other

Agency users

Non-DOE users find it very
difficult to use DOE libraries
and tools. No support beyond
basic usage

DOE E4S Team

DOE E4S Team enables a portfolio approach:
• Integrated delivery/support of libs/tools
• Single point of contact for planning and issues

Commercial
E4S Team

Close interaction:
• DOE team in charge of strategy/policy
• Commercial team handles support

First of a kind interactions:
• Industry/agencies can acquire support
• Shared costs and benefits with DOE

48

Expanding the Scope of Cost and Benefit Sharing for DOE

Software Libraries and Tools

Support Phase Primary Scope Primary Cost and Benefit Sharing Opportunities

Pre-E4S Local facility Local costs and benefits: Prior to ECP and E4S, libraries and tools
were typically strongly connected to the local facility: ANL libs and tools
at ALCF, LBL at NERSC, LLNL at Livermore Computing, etc.

+ ECP E4S All DOE facilities DOE complex-shared costs and benefits: ECP requires, and E4S
enables, interfacility availability and use of libs across all facilities: First-
class support of ANL libs and tools at other facilities, etc.

+ Commercial
E4S

DOE facilities,
other US
agencies,
industry, and
more

Universal shared costs and benefits: Commercial support of E4S
expands cost and benefit sharing to non-DOE entities: DOE costs are
lower, software hardening more rapid. US agencies, industry and others
can contract for support, gaining sustainable use of E4S software and
contributing to its overall support.

Observations for Trilinos and ECP E4S and the SDKs49

ECP is large, structured, and spanning enough time to establish new software approaches

◦ Creation of a 3-tier software org and corresponding levels of software aggregation (product, SDK, E4S)
◦ Time enough to change culture and demonstrate value to stakeholders

Trilinos efforts are both part of E4S and the xSDK and outside of them

◦ Majority of Trilinos funding is not ECP-related
◦ Benefits to being part of E4S and xSDK include

◦ Being part of a larger community
◦ Increased mindshare, recruiting new staff,
◦ Shared exploration of new topics (e.g., mixed/multi-precision)
◦ Better ecosystem interoperability

◦ Costs of being part of E4S and xSDK include
◦ Overheads of synchronizing, coordinating
◦ Complications from need for collaborative open-source development and mission security needs

Introducing a commercial partner facilitates:

◦ Universal cost and benefit sharing
◦ Off-loading of open testing to a non-Sandia partner
◦ Easier partnering with non-Sandia developers

Basic Strategies for GPUs

Performance portability
Portability strategy:

◦ Strategy 1: Isolate performance-impacting code to select kernels, write own CUDA, HIP, SYCL
◦ Strategy 2: Product uses Kokkos and RAJA as primary portability layers
◦ Blend 1 & 2: Provide both
◦ Notes:

◦ No ST products use OpenMP directly for GPU portability but

◦ Kokkos and RAJA have OpenMP backends as an option

Package NVIDIA GPU AMD GPU Intel GPU
ArborX support (Kokkos) support (Kokkos) in progress (Kokkos-SYCL backend)
DTK support (Kokkos) support (Kokkos) in progress (Kokkos-SYCL backend)
Ginkgo support (CUDA) support (HIP) support (DPC++)
heFFTe support (CUDA) support (HIP) support (DPC++)
hypre support (CUDA, RAJA, Kokkos) support (HIP) in progress (DPC++)
libEnsemble supports apps running on GPUs N/A N/A
MAGMA support (CUDA) support (HIP) planned
MFEM support (CUDA) support (HIP) support (DPC++)
PETSc support (CUDA | Kokkos) support (HIP | Kokkos) in progress (DPC++ | Kokkos-SYCL)
SLATE support (CUDA) support (HIP) in progress (DPC++)
STRUMPACK support (CUDA) support (HIP) in progress (SYCL, oneAPI)
Sundials support (CUDA, RAJA) support (HIP, RAJA) support (SYCL, oneAPI, RAJA)
SuperLU support (CUDA) support (HIP) in progress (DPC++, oneAPI)
Tasmanian support (CUDA) support (HIP) support (DPC++), but not in spack
Trilinos support (Kokkos) support (Kokkos) in progress (Kokkos-SYCL backend)

The E4S Two-Step

Step 1:

◦ Migrate existing MPI-CPU code on top of E4S:
◦ All E4S libraries & tools compile & run well on CPU architectures, including multi-threading & (improving) vectorization
◦ Pick a performance portability approach (as described above)
◦ Rewrite your loops for parallel portability, e.g., rewrite in Kokkos or RAJA
◦ Link against E4S CPU versions of relevant libraries

◦ Potential benefits:
◦ Migrating to E4S on a stable computing platform, easy to migrate incrementally and detect execution diffs
◦ Single build via Spack
◦ Potential for using build caches (10x rebuild time improvement)
◦ Single point of access to documentation
◦ Increased quality of user experience via E4S support, E4S and SDK quality commitments
◦ Preparation for Step 2…

The E4S Two-Step

Step 2: Turn on GPU build
◦ Builds with GPU backends (especially if using Kokkos or RAJA)
◦ Transition to GPU is a debugging and adaptation exercise
◦ Track growth in E4S GPU capabilities as E4S products improve GPU offerings

Consider interactions with E4S commercial support team
◦ Pay someone for support
◦ Get advice on product choices

◦ DOE teams generally can’t give you good advice on which solver or IO library to use

◦ Like asking Microsoft and Apple to tell whether to purchase a PC or Mac

GPU Efforts Summary

One legacy of ECP & E4S will be a SW stack that is portable across Nvidia, AMD, and Intel GPUS

Porting to modern GPUs requires almost everything to be done on the GPUs

Common refactoring themes:
◦ Async under collectives
◦ Batch execution
◦ Pre-allocation and highly concurrent assembly: Sparse matrix assembly via COO format with atomics

Two+hybrid portability models are used:
◦ Use portability layers: Kokkos, RAJA or (eventually) OpenMP w target offload (OpenACC?)
◦ Isolate and custom write: Isolate perf-portable kernels and write your own CUDA, HIP, SYCL backend
◦ Hybrid: Use portability layers, customize key kernels only

Explore low-precision arithmetic: Substantial benefit (and risks)

Rely more on third-party reusable libraries and tools.

Research Software Science

E x p a n d i n g t h e s k i l l s e t f o r p r o d u c i n g & u s i n g s c i e n t i f i c s o f t wa r e

Research SW Science Michael Heroux (maherou@sandia.gov)

What is Research Software Science?
• Definition: Applying the scientific method to understanding and improving how software is developed and

used for research

– Scientific Method
• Use formal observation and experimentation to obtain & disseminate knowledge

• Current approach is ad hoc, engineered: See a problem, explore options to improve, pick one, move on
• Yes, there is software engineering research, so let’s call it science too

– Understanding and Improving
• Obtain data to detect correlation, design experiments to identify cause and effect

– Developed and Used
• Developer/User, User-only, individuals, teams, communities

• Leverage cognitive and social sciences

– Research
• Focus on software used in service of scientific advances

Research SW Science Michael Heroux (maherou@sandia.gov)

RSS Components

• Technical component
– Research software addresses highly technical domains

• Participation requires advanced degrees, on-going participation in domain community – significant time investment
• Reason why “off-the-shelf” software tools & processes often need adaptation, or may not address high-priority needs

• Social component
– Scientific software development and use are increasingly a team (and team of teams) activity
– Teams often composed of members who are unaware (and uninterested?) in exploring human factors
– Community engagement is increasingly important

• Cognitive component
– Research software community members are problem solvers, love new and challenging problems
– Are also sometimes described as “herds of cats”, resistant to prescriptive approaches

Key observation: We are scientists,
problem solvers. Let’s use science to
address our challenges!

Now: Improved SW environments
(Jupyter), integration of software
specialists as team members, data
mining of repos

Next: Research Software Science
- Use scientific method to understand,

improve development & use of
software for research.

- Incorporate cognitive & social
sciences.

Social & Cognitive
Specialists

+ Data & SW
Specialists

+ Math & CS
Specialists

Domain Science
SpecialistsTe

am
 S

ki
lls

 O
ve

r T
im

e

Expanding Software Team Skills: Research Software Science (RSS)

https://bssw.io/blog_posts/research-software-science-a-scientific-approach-to-understanding-and-improving-how-we-develop-and-use-software-for-research

https://bssw.io/blog_posts/research-software-science-a-scientific-approach-to-understanding-and-improving-how-we-develop-and-use-software-for-research

Research SW Science Michael Heroux (maherou@sandia.gov)

First-of-a-kind US DOE Workshop

• The Science of Scientific-Software Development and Use
– Dec 13 – 16, 2021
– https://www.orau.gov/SSSDU2021

• Workshop Brochure available:
– https://doi.org/10.2172/1846008

• Workshop Report in progress:
– 3 Priority Research Directions
– 3 Cross-cutting Themes

https://www.orau.gov/SSSDU2021
https://doi.org/10.2172/1846008

60

SSSDU Priority Research Directions

• PRD1: Develop methodologies and tools to comprehensively improve team-based scientific
software development and use

– Key question: What practices, processes, and tools can help improve the development, sustainment,
evolution, and use of scientific software by teams?

• PRD2: Develop next-generation tools to enhance developer productivity and software
sustainability

– Key questions: How can we create and adapt tools to improve developer effectiveness and efficiency,
software sustainability, and support for the continuous evolution of software? How can we support and
encourage the adoption of such tools by developers?

• PRD3: Develop methodologies, tools, and infrastructure for trustworthy software-intensive
science

– Key questions: How can we facilitate and encourage effective and efficient reuse of data and software
from third parties while ensuring the integrity of our software and the resulting science? How can we provide
flexible environments that “bake in” the tracking of software, provenance, and experiment management
required to support peer review and reproducibility?

Focus: Team Impact

Focus: Developer Impact

Focus: Societal Impact

Research SW Science Michael Heroux (maherou@sandia.gov)

SSSDU Cross-cutting Themes

• Theme 1: We need to consider both human and technical elements to better understand how to improve the
development and use of scientific software.

• Theme 2: We need to address urgent challenges in workforce recruitment and retention in the computing
sciences with growth through expanded diversity, stable career paths, and the creation of a community and
culture that attract and retain new generations of scientists.

• Theme 3: Scientific software has become essential to all areas of science and technology, creating
opportunities for expanded partnerships, collaboration, and impact.

Research SW Science Michael Heroux (maherou@sandia.gov)

Collegeville Workshops on
Scientific Software

Special Issue: IEEE Computing in Science and Engineering, May/June 2022

• The PETSc Community as Infrastructure
Mark Adams, et. al.

• Challenges of and Opportunities for a Large Diverse Software Team
Cody J. Balos, et. al.

• Structured and Unstructured Teams for Research Software Development at the
Netherlands eScience Center
Carlos Martinez-Ortiz, et. al.

• Experiences Integrating Interns into Research Software Teams
Jay Lofstead

• In Their Shoes: Persona-Based Approaches to Software Quality Practice
Incentivization
M. R. Mundt, R. M. Milewicz, E. M. Raybourn

• Three Days:
– Experiences and Challenges

– Technical Approaches for Improvement

– Cultural Approaches for Improvement

• Themes:
– 2019: Sustainability

– 2020: Productivity

– 2021: Teams

– 2022: Skip due pandemic workforce challenges

– 2023: Design

Research SW Science Michael Heroux (maherou@sandia.gov)

Trends (I see) in Scientific Software that increase value of RSS
• AI-assisted development

– Elevated thinking – intent to C++
– Not unlike C++ to machine code
– Fewer programmers? Maybe
– Opportunity: More emphasis on purpose & design

• Deeper awareness of technology and society
– Software systems adapted to fit scientists
– Broaden usability, accessibility, impact

• UX applied to scientific software products
– Personas & journey stories – not new
– Applied to scientific software teams of developer-users – less common?
– Just getting started

Opportunities for Trilinos 2022 - 203064

The ECP has demonstrated the potential of a sustained open-source software organization to:
◦ Deliver DOE ASCR R&D to users, facilities, vendors and the open-source community via a curated software portfolio
◦ Grow the next generation workforce
◦ Address growing reliance on software as first-class entity
◦ Raise the quality of the software we provide

Software platforms like GitHub, Spack, containers provide unprecedented opportunities to accelerate scientific progress:
◦ Tools and workflows enable rich collaboration
◦ E4S, the SDKs, and Spack binary caches will transform our ability to use rich software ecosystems
◦ Cloud environments will be major HPC resource

Next generation software teams need to include skills in cognitive and social sciences
◦ Many future challenges and opportunities for scientific progress are about people and technology
◦ As computational scientists we can appreciate the role of science to inform and improve how we develop and use software to do research

The path to HPC success is through execution on heterogeneous devices
◦ Solving the problem of utilizing multiple homogeneous GPU devices is just the first step
◦ ECP helps toward portability across multiple vendor GPU offerings, but there is so much more to come

The Trilinos team can be a leader among peers in establishing this organization
◦ Trilinos on top of Kokkos is well positioned to rapidly adapt to future emerging devices
◦ Trilinos team has deep knowledge and experience in key areas needed for organization success
◦ Trilinos team in a privileged position to explore the critical need for software quality assurance while “Working in Public”

Opportunities for Trilinos 2031 – 2040 65

Programming by intent

◦ GitHub CoPilot and Amazon CodeWhisperer
◦ Programmer coaches the AI to produce code
◦ Programmer focus is on requirements, design, test definitions

ML replacements for physics source code

◦ Lines of C++ replaced by Neural Network graph weights
◦ Key kernel: Matrix multiplication

Software design starts with thorough user-developer requirements gathering and analysis

◦ Leverage knowledge and skills from social and cognitive sciences
◦ Focus on making people most productive

Overall theme:

◦ Domain knowledge becomes increasingly important
◦ Mechanics of producing code become less important

66

2022

