

An Introduction to the Rapid Optimization Library

Drew Kouri Denis Ridzal Greg Von Winckel Aurya Javeed

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0005255. SAND NO 2014-00000

A Motivating Example

3 Rocket Dynamics

From the conservation of momentum,

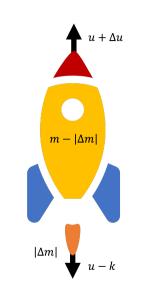
$$\frac{dp}{dt} \approx \frac{\left\{ \left(m - |\Delta m|\right) \left(u + \Delta u\right) + |\Delta m| \left(u - k\right)\right\} - mu}{\Delta t}$$
$$= \sum F = -mg$$
$$\implies -m\frac{du}{dt} = k\frac{dm}{dt} + mg.$$
(1)

Here, we take g and the exhaust speed k to be constants but

$$\frac{dm}{dt} = -\mathbf{z} < \mathbf{0},\tag{2}$$

where z = z(t) is a control of our choosing. We want to solve the fuel efficiency problem

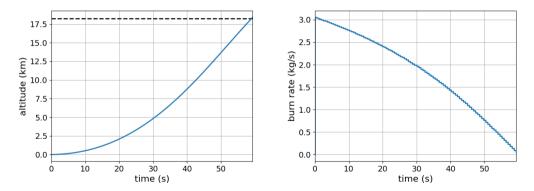
minimize $||z||_{L^{2}(0,T)}^{2} + \lambda |y^{*} - \int_{0}^{T} u(t) dt|^{2}$ subject to (1) and (2).



4 Solution

We discretize the fuel efficiency problem into a nonlinear program (NLP).

(in)



So why ROL?

5 Numerics

Composite-step t	rust-region	solver
------------------	-------------	--------

iter	fval	cnorm	gLnorm	snorm	delta	nnorm	tnorm	#fval	#grad	
0	5.333333e+03	2.027966e-13	2.666783e+00							
1	5.223834e+03	2.933645e+00	3.555940e+00	1.000000e+02	2.00e+02	1.13e-14	1.00e+02	3	3	
2	5.074484e+03	3.977936e+00	5.320566e+00	2.000000e+02	2.00e+02	1.06e-01	2.00e+02	5	5	
3	4.936750e+03	1.929162e+00	6.883693e+00	1.657243e+02	1.16e+03	1.61e-01	1.66e+02	7	7	
47	4.426957e+03	1.813330e-04	9.328418e-02	2.898613e+00	1.16e+03	7.35e-06	2.90e+00	95	95	
48	4.426934e+03	6.805572e-05	4.641692e-02	1.479816e+00	1.16e+03	1.10e-05	1.48e+00	97	97	
49	4.426917e+03	1.176645e-04	7.690407e-02	2.328988e+00	1.16e+03	4.24e-06	2.33e+00	99	99	
50	4.426902e+03	4.457843e-05	3.584340e-02	1.192131e+00	1.16e+03	7.13e-06	1.19e+00	101	101	

Composite-step trust-region solver

iter	fval	cnorm	gLnorm	snorm	delta	nnorm	tnorm	#fval	#grad	
0	5.333333e+03	1.570856e-15	1.803732e+02							
1	4.976505e+03	7.464298e-01	1.380737e+02	2.175210e+01	1.00e+02	3.03e-15	2.18e+01	3	3	
2	5.252000e+03	2.467093e-02	2.549998e+02	2.755372e+00	1.00e+02	2.75e+00	5.33e-02	5	5	
3	4.473015e+03	7.617080e-02	2.595459e+01	7.041189e+00	1.00e+02	1.23e-01	7.04e+00	7	7	
4	4.428484e+03	2.072535e-03	3.485754e+00	1.936220e+00	1.00e+02	3.08e-01	1.91e+00	9	9	
5	4.426855e+03	3.830153e-06	7.137584e-01	8.183971e-02	1.00e+02	8.98e-03	8.13e-02	11	11	
6	4.426841e+03	1.090076e-06	6.769629e-03	4.490118e-02	1.00e+02	1.87e-05	4.49e-02	13	13	
7	4.426840e+03	8.296731e-12	5.966856e-04	1.035859e-04	1.00e+02	4.58e-06	1.03e-04	15	15	
8	4.426840e+03	3.307995e-13	3.785700e-06	1.927025e-05	1.00e+02	2.37e-11	1.93e-05	17	17	
Optim	ization Termina	ated with Status	s: Converged							

6 Custom Linear Algebra – A Feature of ROL

ROL makes it easy to tailor inner products to problems.

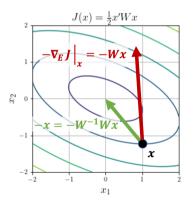
For example, we can think of our control z as an element of a Hilbert space \mathcal{H} with the inner product

$$\langle f,g\rangle = \int_0^T f(t)g(t)dt$$

The discretized analogue of \mathcal{H} is a finite-dimensional space whose inner product is weighted by a quadrature matrix W – i.e., $\langle f, g \rangle = f' Wg$.

A gradient with respect to a vector in the finite-dimensional space will be a function of W.

$$\lim_{h \to 0} \frac{|J(x+h) - J(x) - \langle \nabla J |_x, h \rangle|}{h} = 0$$
$$\implies \nabla J |_x = W^{-1} \nabla_E J |_x$$



Málek, Josef, and Zdeněk Strakoš. Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs. SIAM, 2014.

7 RO

Trilinos package for **large-scale optimization**. Uses: optimal design, optimal control and inverse problems in engineering applications; mesh optimization; image processing.

- Modern optimization algorithms.
- Maximum HPC hardware utilization.
- Special programming interfaces for simulation-based optimization.
- Optimization under uncertainty.
- Hardened, production-ready algorithms for unconstrained, equality-constrained, inequality-constrained and nonsmooth optimization.
- Novel algorithms for optimization under uncertainty and risk-averse optimization.
- Unique capabilities for optimization-guided inexact and adaptive computations.
- Geared toward maximizing HPC hardware utilization through direct use of application data structures, memory spaces, linear solvers and nonlinear solvers.
- Special interfaces for engineering applications, for streamlined and efficient use.
- Rigorous implementation verification: finite difference and linear algebra checks.
- Hierarchical and custom (user-defined) algorithms and stopping criteria.

Formalism and Algorithms

9 Mathematical Formalism

ROL solves (smooth) nonlinear optimization problems numerically

minimize
$$J(x)$$
 subject to
$$\begin{cases} c(x) = 0\\ \ell \le x \le u\\ Ax = b. \end{cases}$$

Here, x belongs to a Banach space \mathcal{X} and

$$J: \mathcal{X} \to \mathbb{R}, \quad c: \mathcal{X} \to \mathcal{C}, \text{ and } A: \mathcal{X} \to \mathcal{D},$$

where ${\mathcal C}$ and ${\mathcal D}$ are Banach spaces as well.

All three of these maps are Fréchet differentiable. In addition, A is linear.

The bounds $\ell \leq x \leq u$ apply pointwise.

•

10 Algorithms

Type U	Type B	Type E	Type G		
"Unconstrained"	"Bound Constrained"	"Equality Constrained"	"General Constraints"		
minimize $J(x)$	minimize $J(x)$	minimize $J(x)$	$\begin{array}{l} \underset{x}{\text{minimize } J(x)}\\ \text{subject to } \begin{cases} c(x) = 0\\ \ell \leq x \leq u\\ Ax = b \end{cases} \end{array}$		
subject to $\begin{cases} \\ Ax = b \end{cases}$	subject to $\begin{cases} \ell \leq x \leq u \\ Ax = b \end{cases}$	subject to $\begin{cases} c(x) = 0 \\ Ax = b \end{cases}$			
 Methods: trust region and line search globalization gradient descent, quasi and inexact Newton, nonlinear conjugate gradient. 	Methods: projected gradient and projected Newton, primal-dual active set.	Methods: composite step SQP and	 (Ax = b) Methods: augmented Lagrangian, interior point, Moreau-Yosida, stabilized LCL. 		

API

12 ROL::Objective

minimize
$$J(x)$$
 subject to
$$\begin{cases} c(x) = 0 \\ \ell \le x \le u \\ Ax = b \end{cases}$$

Member Functions

- **value** J(x)
- gradient $g = \nabla J(x)$
- hessVec $Hv = [\nabla^2 J(x)]v$
- update modify member data
- invHessVec $H^{-1}v = [\nabla^2 J(x)]^{-1}v$
- **precond** approximate $H^{-1}v$
- **dirDeriv** $\frac{d}{dt}J(x + tv)|_{t=0}$

(pure virtual virtual optional)

- We do not need to specify linear operators with matrices – their action on vectors is enough.
- ROL works best with analytic derivatives. Without them, ROL defaults to finite difference approximations.
- Tools: checkGradient, checkHessVec, checkHessSym.

ROL::Objective minimize J(x) subject to $\begin{cases} c(x) = 0\\ \ell \le x \le u\\ Ax = b \end{cases}$

Member Functions

- **value** J(x)
- **gradient** $g = \nabla J(x)$
- hessVec $Hv = [\nabla^2 J(x)]v$
- update modify member data
- invHessVec $H^{-1}v = [\nabla^2 J(x)]^{-1}v$
- **precond** approximate $H^{-1}v$
- **dirDeriv** $\frac{d}{dt}J(x + tv)|_{t=0}$

(pure virtual virtual optional)

$$J(u, z) = ||z||_{L^{2}(0, T)}^{2} + \lambda |y^{*} - \int_{0}^{T} u(t) dt|^{2}$$


```
class RocketObjective : public ROL::Objective<double>
public:
 Objective(double targetHeight , double lambda ,
            const std::vector<double>& w .) :
   targetHeight(targetHeight ), lambda(lambda ), w(w )
   N = w.size():
 double value(const ROL::Vector<double>& x. double& tol)
   const std::vector<double>& z = getControl(x):
   const std::vector<double>& u = getState(x);
    int i:
   double zIntegral = 0:
   for (i = 0; i < N; ++i)
      zIntegral += w[i]*z[i]*z[i];
   double uIntegral = 0;
    for (i = 0; i < N; ++i)
     uIntegral += w[i]*u[i];
   return zIntegral + lambda*std::pow(uIntegral - targetHeight, 2):
```

4 ROL::Constraint

minimize J(x) subject to $\begin{cases} c(x) = 0\\ \ell \le x \le u\\ Ax = b \end{cases}$

Member Functions

- **value** c(x)
- **applyJacobian** [c'(x)]v
- **applyAdjointJacobian** $[C'(x)]^*V$
- **applyAdjointHessian** $[c''(x)](v, \cdot)^* u$
- update modify member data
- applyPreconditioner
- solveAugmentedSystem

ROL::BoundConstraint implements $\ell \leq x \leq u$.

$$\frac{du}{dt} + k \frac{d\log m}{dt} + g = 0$$
 and $\frac{dm}{dt} = -z$


```
const std::vector<double>& z = getControl(x);
computeMass(z);
```

```
void value(ROL::Vector<double>& c, const ROL::Vector<double>& x, double& tol)
{
  std::vector<double>& cstd = getVector(c);
```

```
const std::vector<double>& z = getControl(x);
const std::vector<double>& u = getState(x);
```

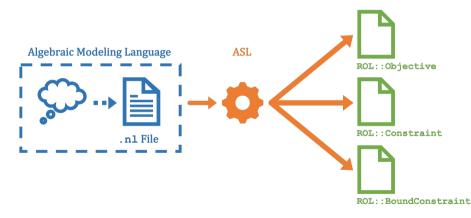
```
cstd[0] = u[0] + k*std::log(mass[0]/mInitial) + g*dt;
for(int i = 1; i < N; ++i)
        cstd[i] = u[i] - u[i-1] + k*std::log(mass[i]/mass[i - 1]) + g*dt;
```

```
••
```

15 AMPL-Solver Interface Library (ASL)

ROL can be a backend for algebraic modeling languages. We have an interface to AMPL.

G



 Note: Our current interface is matrix free, i.e., we do not yet precondition with the matrix information from ASL.

16 **The** SimOpt Interface

Our rocket example – and optimal control in general – is what we call a simulation-constrained optimization problem.

Full Space Formulation

The problem is *explicitly* constrained:

 $\begin{array}{l} \underset{(u,z)\in\mathcal{U}\times\mathcal{Z}}{\text{minimize}} \quad J(u,z)\\ \text{subject to } \quad c(u,z)=0 \end{array}$

Reduced Space Formulation

The problem is *implicitly* constrained:

where u = S(z) solves c(u, z) = 0.

- \blacksquare z = the vector being optimized (often a control or set of parameters)
- u = a state resulting from c (the simulation)

In engineering applications, c is often a differential equation.

ROL's SimOpt interface is "middleware":

- u and z are separated out of the optimization vector x
- converting full space formulations to reduced space ones (and vice-versa) is trivial.

17 The SimOpt Interface

- value(u,z)
- gradient_1(g,u,z)
- gradient_2(g,u,z)
- hessVec_11(hv,v,u,z)
- hessVec_12(hv,v,u,z)
- hessVec_21(hv,v,u,z)
- hessVec_22(hv,v,u,z)

A mnemonic:

■ 1 = "sim" = *u*

■ 2 = "opt" = *z*.

ROL::Constraint_SimOpt

value(u,z)

- applyJacobian_1(jv,v,u,z)
- applyJacobian_2(jv,v,u,z)
- applyInverseJacobian_1(ijv,v,u,z)
- applyAdjointJacobian_1(ajv,v,u,z)
- applyAdjointJacobian_2(ajv,v,u,z)
- applyInverseAdjointJacobian_1(iajv,v,u,z)
- applyAdjointHessian_11(ahwv,w,v,u,z)
- applyAdjointHessian_12(ahwv,w,v,u,z)
- applyAdjointHessian_21(ahwv,w,v,u,z)
- applyAdjointHessian_22(ahwv,w,v,u,z)
- solve(u,z)

18 Stochastic Optimization

ROL also has middleware for stochastic problems:

 $\underset{x \in C}{\text{minimize}} \ \mathcal{R}(f(x,\xi)).$

Here, *x* is a deterministic decision but ξ is a set of random parameters, i.e., $\xi = \xi(\omega)$.

For each *x*, $f(x, \xi)$ is a random variable $F_x(\omega)$.

 ${\cal R}$ is a functional on these random variables that quantifies risk. ${\cal R}$ could be – for instance –

- an expectation: $\mathcal{R}(F_x) := \mathbb{E}[F_x]$,
- a quantile (the value at risk),
- a distributionally robust model

 $\mathcal{R}(F_x) = \sup_{P \in \mathcal{U}} \mathbb{E}_P[F_x].$

The set C can include both stochastic (e.g., $\ell \leq \tilde{\mathcal{R}}(G_x) \leq u$) and deterministic constraints.

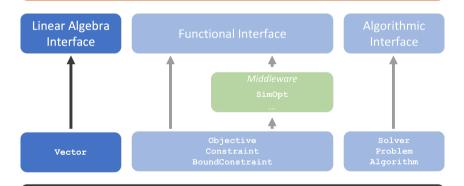
ROL solves these problems in the usual way: $\mathcal{R}(F_x)$ and the stochastic constraints in *C* are replaced with approximations. For example, we might take

$$\mathbb{E}[F(x)] \approx \frac{1}{N} \sum_{k=1}^{N} f(x, \xi_k),$$

where the ξ_k are independent and identically distributed samples of ξ .

19 Design

Application Programming Interface (API)



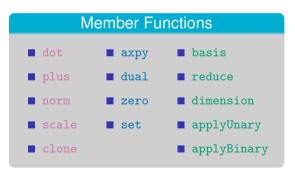
ROL

20 ROL::Vector – A Linear Algebra Interface

Optimization algorithms manipulate vectors. But the *implementation* of these vectors do not affect what the algorithms do. (For example, the number of iterations before gradient descent reaches some stopping condition will be the same whether x – the vector being optimized – is stored on a laptop or distributed over a network.)

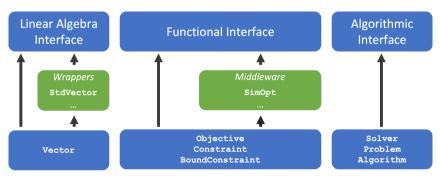
ROL similarly relegates the inner workings of vectors to users. As a result,

- ROL is hardware agnostic. Sandians run ROL on personal computers (in serial and MPI parallel), GPUs, and supercomputers too.
- Users can easily tune the linear algebra of a problem by inheriting from an instance of ROL::Vector (which we did in the rocket example).



21 Design

(in



ROL

Context

23 Related Software

- Hilbert Class Library (HCL) Rice University An abstract linear algebra interface.
- Trilinos Sandia National Laboratories
 Collection of linear and nonlinear solvers based on linear algebra abstractions.
 - RTOp and Thyra Packages for an extended set of algebraic abstractions.
 - МООСНО

Optimization package built on Thyra that solves reduced space formulations.

 Rice Vector Library (RVL) - Rice University A revamp of HCL.

- Trilinos (continued)
 - Aristos

Optimization package with algebra abstractions and full space formulations.

• Optipack

A few special-purpose optimization routines using algebra abstractions.

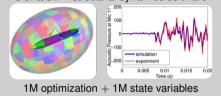
PEOpt - Sandia National Laboratories

Optimization packages using an alternative implementation of algebra abstractions.

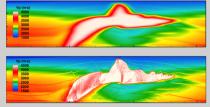
Optizelle - OptimoJoe
 Successor to PEOpt.

24 Applications

Inverse Problems in Acoustics/Elasticity Sierra/SD – structural dynamics software



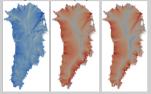
DGM – a library of discontinuous Galerkin methods for solving partial differential equations



500K optimization + 2M \times 5K state variables

Estimating Basal Friction of Ice Sheets

Albany – a multiphysics simulator



5M optimization + 20M state variables

Super-Resolution Imaging

GPU processing with ArrayFire

250K optimization variables on an NVIDIA Tesla

25 Conclusions

- ROL is C++ code for solving large optimization problems.
- It implements a variety of matrix-free algorithms and has been "battle-tested" on problems at Sandia.
- ROL has a flexible interface that can connect with algebraic modeling languages. And, importantly, ROL lets users implement their own vectors.