
Sandia National Laboratories is a multimis-
sion laboratory managed and operated by

National Technology and Engineering Solutions
of Sandia LLC, a wholly owned subsidiary of
Honeywell International Inc. for the U.S. De-

partment of Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

SAND NO. 2014-00000

Get ROL-ing

An Introduction to the Rapid Optimization Library

Drew Kouri Denis Ridzal Greg Von Winckel Aurya Javeed

UNCLASSIFIED UNLIMITED RELEASE

UNCLASSIFIED UNLIMITED RELEASE

A Motivating Example

3 Rocket Dynamics
From the conservation of momentum,

dp
dt

≈
{(

m − |∆m|
)(

u +∆u
)
+ |∆m|

(
u − k

)}
− mu

∆t
=

∑
F = −mg

=⇒ −m
du
dt

= k
dm
dt

+ mg. (1)

Here, we take g and the exhaust speed k to be constants but

dm
dt

= −z < 0, (2)

where z = z(t) is a control of our choosing.

We want to solve the fuel efficiency problem

minimize
u,z

∥∥z
∥∥2

L2(0,T)
+λ

∣∣∣y∗−
∫ T

0
u(t)dt

∣∣∣2 subject to (1) and (2).

4 Solution

We discretize the fuel efficiency problem into a nonlinear program (NLP).

So why ROL?

5 Numerics

Composite-step trust-region solver
iter fval cnorm gLnorm snorm delta nnorm tnorm #fval #grad ...
0 5.333333e+03 2.027966e-13 2.666783e+00
1 5.223834e+03 2.933645e+00 3.555940e+00 1.000000e+02 2.00e+02 1.13e-14 1.00e+02 3 3
2 5.074484e+03 3.977936e+00 5.320566e+00 2.000000e+02 2.00e+02 1.06e-01 2.00e+02 5 5
3 4.936750e+03 1.929162e+00 6.883693e+00 1.657243e+02 1.16e+03 1.61e-01 1.66e+02 7 7
...
47 4.426957e+03 1.813330e-04 9.328418e-02 2.898613e+00 1.16e+03 7.35e-06 2.90e+00 95 95
48 4.426934e+03 6.805572e-05 4.641692e-02 1.479816e+00 1.16e+03 1.10e-05 1.48e+00 97 97
49 4.426917e+03 1.176645e-04 7.690407e-02 2.328988e+00 1.16e+03 4.24e-06 2.33e+00 99 99
50 4.426902e+03 4.457843e-05 3.584340e-02 1.192131e+00 1.16e+03 7.13e-06 1.19e+00 101 101
...

Composite-step trust-region solver
iter fval cnorm gLnorm snorm delta nnorm tnorm #fval #grad ...
0 5.333333e+03 1.570856e-15 1.803732e+02
1 4.976505e+03 7.464298e-01 1.380737e+02 2.175210e+01 1.00e+02 3.03e-15 2.18e+01 3 3
2 5.252000e+03 2.467093e-02 2.549998e+02 2.755372e+00 1.00e+02 2.75e+00 5.33e-02 5 5
3 4.473015e+03 7.617080e-02 2.595459e+01 7.041189e+00 1.00e+02 1.23e-01 7.04e+00 7 7
4 4.428484e+03 2.072535e-03 3.485754e+00 1.936220e+00 1.00e+02 3.08e-01 1.91e+00 9 9
5 4.426855e+03 3.830153e-06 7.137584e-01 8.183971e-02 1.00e+02 8.98e-03 8.13e-02 11 11
6 4.426841e+03 1.090076e-06 6.769629e-03 4.490118e-02 1.00e+02 1.87e-05 4.49e-02 13 13
7 4.426840e+03 8.296731e-12 5.966856e-04 1.035859e-04 1.00e+02 4.58e-06 1.03e-04 15 15
8 4.426840e+03 3.307995e-13 3.785700e-06 1.927025e-05 1.00e+02 2.37e-11 1.93e-05 17 17
Optimization Terminated with Status: Converged

6 Custom Linear Algebra – A Feature of ROL

ROL makes it easy to tailor inner products to
problems.

For example, we can think of our control z as an
element of a Hilbert space H with the inner product

⟨f ,g⟩ =
∫ T

0
f (t)g(t)dt .

The discretized analogue of H is a finite-dimensional
space whose inner product is weighted by a
quadrature matrix W – i.e., ⟨f ,g⟩ = f ′Wg.

A gradient with respect to a vector in the
finite-dimensional space will be a function of W .

Málek, Josef, and Zdeněk Strakoš. Preconditioning and the Conjugate Gradient
Method in the Context of Solving PDEs. SIAM, 2014.

lim
h→0

|J(x + h)− J(x)− ⟨∇J
∣∣
x ,h⟩|

h
= 0

=⇒ ∇J
∣∣
x = W−1∇EJ

∣∣
x

7 ROL
Trilinos package for large-scale optimization. Uses: optimal design, optimal control and inverse
problems in engineering applications; mesh optimization; image processing.

Numerical optimization made practical:
Any application, any hardware, any problem size.

Modern optimization algorithms.

Maximum HPC hardware utilization.

Special programming interfaces for
simulation-based optimization.

Optimization under uncertainty.

Hardened, production-ready algorithms for unconstrained, equality-constrained,
inequality-constrained and nonsmooth optimization.
Novel algorithms for optimization under uncertainty and risk-averse optimization.
Unique capabilities for optimization-guided inexact and adaptive computations.
Geared toward maximizing HPC hardware utilization through direct use of application data
structures, memory spaces, linear solvers and nonlinear solvers.
Special interfaces for engineering applications, for streamlined and efficient use.
Rigorous implementation verification: finite difference and linear algebra checks.
Hierarchical and custom (user-defined) algorithms and stopping criteria.

Formalism and Algorithms

9 Mathematical Formalism

ROL solves (smooth) nonlinear optimization problems numerically

minimize
x

J(x) subject to


c(x) = 0
ℓ ≤ x ≤ u
Ax = b.

(G)

Here, x belongs to a Banach space X and

J : X → R, c : X → C, and A : X → D,

where C and D are Banach spaces as well.

All three of these maps are Fréchet differentiable. In addition, A is linear.

The bounds ℓ ≤ x ≤ u apply pointwise.

10 Algorithms

Type U
"Unconstrained"

minimize
x

J(x)

subject to

Ax = b

Methods:

trust region and
line search
globalization

gradient descent,
quasi and inexact
Newton, nonlinear
conjugate gradient.

Type B
"Bound Constrained"

minimize
x

J(x)

subject to

ℓ ≤ x ≤ u
Ax = b

Methods:

projected gradient
and projected
Newton,
primal-dual active
set.

Type E
"Equality Constrained"

minimize
x

J(x)

subject to


c(x) = 0

Ax = b

Methods:

composite step
SQP and ...

Type G
"General Constraints"

minimize
x

J(x)

subject to


c(x) = 0
ℓ ≤ x ≤ u
Ax = b

Methods:

augmented
Lagrangian, interior
point,
Moreau-Yosida,
stabilized LCL.

API

12 ROL::Objective

minimize
x

J(x) subject to


c(x) = 0
ℓ ≤ x ≤ u
Ax = b

Member Functions
value - J(x)

gradient - g = ∇J(x)

hessVec - Hv = [∇2J(x)]v

update - modify member data

invHessVec - H−1v = [∇2J(x)]−1v

precond - approximate H−1v

dirDeriv - d
dt J(x + tv)|t=0

(pure virtual virtual optional)

We do not need to specify linear
operators with matrices – their action on
vectors is enough.

ROL works best with analytic
derivatives. Without them, ROL defaults
to finite difference approximations.

Tools: checkGradient, checkHessVec,
checkHessSym.

13 ROL::Objective

minimize
x

J(x) subject to


c(x) = 0
ℓ ≤ x ≤ u
Ax = b

Member Functions
value - J(x)

gradient - g = ∇J(x)

hessVec - Hv = [∇2J(x)]v

update - modify member data

invHessVec - H−1v = [∇2J(x)]−1v

precond - approximate H−1v

dirDeriv - d
dt J(x + tv)|t=0

(pure virtual virtual optional)

J(u, z) =
∥∥z

∥∥2
L2(0,T)

+ λ
∣∣∣y∗ −

∫ T

0
u(t) dt

∣∣∣2

14 ROL::Constraint

minimize
x

J(x) subject to


c(x) = 0
ℓ ≤ x ≤ u
Ax = b

Member Functions
value - c(x)

applyJacobian - [c′(x)]v

applyAdjointJacobian - [c′(x)]∗v

applyAdjointHessian - [c′′(x)](v , ·)∗u

update - modify member data

applyPreconditioner

solveAugmentedSystem

ROL::BoundConstraint implements ℓ ≤ x ≤ u.

du

dt
+ k

d log m

dt
+ g = 0 and

dm

dt
= −z

15 AMPL-Solver Interface Library (ASL)

ROL can be a backend for algebraic modeling languages. We have an interface to AMPL.

Note: Our current interface is matrix free, i.e., we do not yet precondition with the
matrix information from ASL.

16 The SimOpt Interface

Our rocket example – and optimal control in general – is what we call a
simulation-constrained optimization problem.

Full Space Formulation
The problem is explicitly constrained:

minimize
(u,z)∈U×Z

J(u, z)

subject to c(u, z) = 0

Reduced Space Formulation
The problem is implicitly constrained:

minimize
z∈Z

J(S(z), z),

where u = S(z) solves c(u, z) = 0.

z = the vector being optimized (often a control or set of parameters)

u = a state resulting from c (the simulation)

In engineering applications, c is often a differential equation.

ROL’s SimOpt interface is "middleware":

u and z are separated out of the optimization vector x

converting full space formulations to reduced space ones (and vice-versa) is trivial.

17 The SimOpt Interface
ROL::Objective_SimOpt

value(u,z)

gradient_1(g,u,z)

gradient_2(g,u,z)

hessVec_11(hv,v,u,z)

hessVec_12(hv,v,u,z)

hessVec_21(hv,v,u,z)

hessVec_22(hv,v,u,z)

A mnemonic:

1 = "sim" = u

2 = "opt" = z.

ROL::Constraint_SimOpt

value(u,z)

applyJacobian_1(jv,v,u,z)

applyJacobian_2(jv,v,u,z)

applyInverseJacobian_1(ijv,v,u,z)

applyAdjointJacobian_1(ajv,v,u,z)

applyAdjointJacobian_2(ajv,v,u,z)

applyInverseAdjointJacobian_1(iajv,v,u,z)

applyAdjointHessian_11(ahwv,w,v,u,z)

applyAdjointHessian_12(ahwv,w,v,u,z)

applyAdjointHessian_21(ahwv,w,v,u,z)

applyAdjointHessian_22(ahwv,w,v,u,z)

solve(u,z)

18 Stochastic Optimization
ROL also has middleware for stochastic
problems:

minimize
x∈C

R(f (x , ξ)).

Here, x is a deterministic decision but ξ is a set of
random parameters, i.e., ξ = ξ(ω).

For each x , f (x , ξ) is a random variable Fx(ω).

R is a functional on these random variables that
quantifies risk. R could be – for instance –

an expectation: R(Fx) := E[Fx],

a quantile (the value at risk),

a distributionally robust model

R(Fx) = sup
P∈U

EP [Fx].

The set C can include both stochastic
(e.g., ℓ ≤ R̃(Gx) ≤ u) and deterministic
constraints.

ROL solves these problems in the usual
way: R(Fx) and the stochastic
constraints in C are replaced with
approximations. For example, we might
take

E[F (x)] ≈ 1
N

N∑
k=1

f (x , ξk),

where the ξk are independent and
identically distributed samples of ξ.

19 Design

20 ROL::Vector – A Linear Algebra Interface

Optimization algorithms manipulate vectors. But the implementation of these vectors do
not affect what the algorithms do. (For example, the number of iterations before gradient
descent reaches some stopping condition will be the same whether x – the vector being
optimized – is stored on a laptop or distributed over a network.)

ROL similarly relegates the inner workings of vectors to users. As a result,

ROL is hardware agnostic. Sandians
run ROL on personal computers (in
serial and MPI parallel), GPUs, and
supercomputers too.

Users can easily tune the linear algebra
of a problem by inheriting from an
instance of ROL::Vector (which we did
in the rocket example).

Member Functions

dot

plus

norm

scale

clone

axpy

dual

zero

set

basis

reduce

dimension

applyUnary

applyBinary

21 Design

Context

23 Related Software

Hilbert Class Library (HCL) - Rice University

An abstract linear algebra interface.

Trilinos - Sandia National Laboratories

Collection of linear and nonlinear solvers based
on linear algebra abstractions.

• RTOp and Thyra

Packages for an extended set of algebraic
abstractions.

• MOOCHO

Optimization package built on Thyra that
solves reduced space formulations.

Rice Vector Library (RVL) - Rice University

A revamp of HCL.

Trilinos (continued)

• Aristos

Optimization package with algebra
abstractions and full space formulations.

• Optipack

A few special-purpose optimization routines
using algebra abstractions.

PEOpt - Sandia National Laboratories

Optimization packages using an alternative
implementation of algebra abstractions.

Optizelle - OptimoJoe

Successor to PEOpt.

https://dl.acm.org/doi/10.1145/317275.317280
https://dl.acm.org/doi/10.1145/1089014.1089021
https://dl.acm.org/doi/10.1145/974781.974785
https://trilinos.github.io/moocho.html
http://www.trip.caam.rice.edu/software/trip/rvl/doc/html/index.htm
https://www.optimojoe.com/products/optizelle/

24 Applications
Inverse Problems in Acoustics/Elasticity

Sierra/SD – structural dynamics software

1M optimization + 1M state variables

DGM – a library of discontinuous Galerkin
methods for solving partial differential equations

500K optimization + 2M×5K state variables

Estimating Basal Friction of Ice Sheets

Albany – a multiphysics simulator

5M optimization + 20M state variables

Super-Resolution Imaging

GPU processing with ArrayFire

250K optimization variables on an NVIDIA Tesla

25 Conclusions

ROL is C++ code for solving large optimization problems.
It implements a variety of matrix-free algorithms and has been "battle-tested"
on problems at Sandia.
ROL has a flexible interface that can connect with algebraic modeling
languages. And, importantly, ROL lets users implement their own vectors.

	A Motivating Example
	Formalism and Algorithms
	API
	Context

