
Sandia National Laboratories is a
multimission laboratory managed

and operated by National Technology
& Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of

Honeywell International Inc., for the
U.S. Department of Energy’s National
Nuclear Security Administration under

contract DE-NA0003525.

What’s new in Tpetra & Data
Services?

SAND2022-11815 C

Presented by: Chr is S iefert , Tpetra Package Lead

EuroTUG 2022, September 13, 2022

Outline

• What’s new in Zoltan2?

• What’s new in SEACAS/IOSS/Exodus?

• What’s new in STK?

• What’s new in Tpetra?

• Other new developments!

2

Note: I will be repeating “new” developments from TUG ’21, more detail on those can be found here:
https://trilinos.github.io/trilinos_user-developer_group_meeting_2021.html

What’s new in Zoltan2? [TUG ‘21 and newer]
• Hybrid distributed/shared memory graph coloring

• Uses MPI + KokkosKernels coloring
• Runs on CPU and GPU (Nvidia/CUDA and AMD/HIP)
• Supports dist-1, dist-2, and partial dist-2 coloring

• Sphynx: New graph partitioner
• Algorithm based on spectral partitioning
• Runs on both CPU and GPU (via Kokkos)
• First multi-GPU graph partitioner!

• In progress:
• Kokkos-based API for input adapters so users can

provide data on either host or device
• Multilevel graph partitioner for GPU

Sphynx partitioner
pipeline:

Slide courtesy of Erik Boman, Zoltan2 lead.

What’s new in SEACAS/IOSS/Exodus? [TUG ‘21]

• POC: Greg Sjaardema

• New Features
• Assemblies – hierarchical groups of blocks/sets/assemblies

• Blobs -- store arbitrarily-sized objects in an exodus file

• Entity Attributes -- “provenance” or annotation data on entities and fields

• Aprepro – Arrays, Exodus integration

• Exodus.py – python3, improved capabilities, testing

• New Integrations – FAODEL, Catalyst2, ADIOS2, TextMesh

• In progress:
• Discontinuous Galerkin Fields

• HDF5 VOL

• Compression (lossy and lossless)

• Others: Windows, scalability, code quality

4

What’s new in STK? [TUG ‘21]

• POC: Alan Williams

• GPU: Improving the performance of synchronizing Fields between CPU and GPU

memory spaces.

• Primarily for Sierra SM

• AMD/HIP: stk-mesh unit-tests now build and run on AMD platforms,

using ROCM 4.3.

• Primarily for ExaWind

• STK Balance: improving work-flow and performance of Balance and

BalanceM2N coming soon.

5

What’s new in Tpetra?

• A lot has changed since EuroTUG 2019!

• The big ones are that Tpetra (and thus the derived linear solver stack) now
supports…

• NVIDIA CUDA w/o UVM.

• AMD GPUs w/ HIP.

• Intel GPUs w/ SYCL (Warning: Not yet regularly tested.)

• As of Trilinos 13.4 over 27,000 lines of deprecated code/interfaces were removed.

• There are other new features (on-node graph assembly, simultaneous
communications, BlockCrs capabiltities, etc.) as well. We’ll get to those in time.

6

Dynamic Profile Removal [TUG ‘19]

• For better portability to GPUs, we have removed the DynamicProfile option for
matrix/graph assembly.

• You now need at least an upper bound on storage to build the Graph (like the old
StaticProfile option).

• Off-processor assembly is still supported (and there is some resizing support for off-
rank imports).

7

FECrs[Graph|Matrix|Vector] [TUG ’19]

• For folks interested in finite elements, we have a FE-centric assembly layer.

• Much better performance than using off-rank calls to insertGlobalEntries.

• Does not require ghosted elements

• Key assumption: If you own an element, you own at least one dof associated with that
element.

• Requires an ownedRowMap and an ownedPlusSharedRowMap (any dof into which you
will be inserting entries. Not quite the column map).

• All indexing can be done locally and both owned and ghost rows are pre-allocated.

8

WrappedDualView and UVM-free Code [TUG’21]

• UVM = CUDA Unified Memory (can be addressed both on Host & GPU)

• Tpetra has Kokkos::DualViews of matrix and vector data

• Kokkos::DualView provides the means for tracking host/device views.

• Sync/modify mechanics.

• Correct use has to be enforced by the user.

• Tpetra::WrappedDualView manages the sync / modify flags between host and device

• A little like SYCL buffers.

• Users no longer sync / modify explicitly.

• Users cannot hold both host and device pointers concurrently.

• Affects MultiVector, CrsMatrix, CrsGraph, and Block variants.

9

Example: Vector fill with UVM is straightforward [TUG ‘21]

// Without UVM, this code will fail

multivector_t mv(…);

auto mvData =

mv.getLocalViewHost();

for (j = 0; j < numData; j++)

mvData(j,0) = rhs(j);

myDeviceFunction(mv);

Code worked with UVM
but failed without UVM

Non-UVM requires careful management of host and device

views [TUG ‘21]

multivector_t mv(…);

auto mvData =

mv.getLocalViewHost();

mv.clear_sync_state();

mv.modify_host();

for (j = 0; j < numData; j++)

mvData(j,0) = rhs(j);

mv.sync_device();

myDeviceFunction(mv);

Without UVM, explicit modify/syncs were
needed – messy and error-prone

Tpetra host/device management issues easier [TUG ’21]

multivector_t mv(…);

auto mvData =

mv.getLocalViewHost();

mv.clear_sync_state();

mv.modify_host();

for (j = 0; j < numData; j++)

mvData(j,0) = rhs(j);

mv.sync_device();

myDeviceFunction(mv);

Without UVM, explicit modify/syncs were
needed – messy and error-prone

Tpetra now manages the
sync/modify state for users

multivector_t mv(…);

{ auto mvData =

mv.getLocalViewHost(

Tpetra::Access::OverwriteAll);

for (j = 0; j < numData; j++)

mvData(j,0) = rhs(j);

}

myDeviceFunction(mv);

Key changes for Tpetra::MultiVector users [TUG ’21]

1. Capture host and device views in separate scopes
• Don’t hold raw pointers to multivector’s data
• Let views go out of scope as soon as you’re done working with them

2. Separate scope for local operations and Trilinos operations on an object
• Trilinos operations can choose where to access data

3. Indicate intended usage of views
• ReadOnly, ReadWrite, OverwriteAll

4. Reduce switching between host and device accesses
• Be aware of data synchronization

Key changes for Tpetra::CrsGraph/CrsMatrix users [TUG ’21]

DEMAND now (rather than returning stored data structures); use wisely

1. Capture host and device views in separate scopes
• Don’t hold raw pointers to data
• Let views go out of scope as soon as you’re done working with them

2. Separate scope for local operations and Trilinos operations on an object
• Trilinos operations can choose where to access data

3. Indicate intended usage of views
• ReadOnly, ReadWrite, OverwriteAll

4. Reduce switching between host and device accesses
• Be aware of data synchronization

5. getLocalMatrix*() and getLocalGraph*() build Kokkos’ matrix and graph ON

6. Functions returning Teuchos::ArrayView of CrsMatrix/CrsGraph data are
dangerous and have been removed.

7. Functions returning raw pointers to CrsMatrix/CrsGraph data are dangerous
and have been removed.

Sa
m

e
a

s
M

u
lt

iV
ec

to
r

Indicate intended usage of views [TUG ’21]

Tpetra syncs as needed for type of access

• Tpetra::Access::ReadOnly

• Tpetra syncs if needed

• Tpetra::Access::ReadWrite

• Tpetra syncs if needed

• Tpetra marks modified

• Tpetra::Access::OverwriteAll

• Tpetra syncs only if view is a subview

• Tpetra marks modified

• Use only if writing ALL entries of view

// Use access tags to indicate intent

{

auto

auto

auto

read_h =

mv.getLocalViewHost(

Tpetra::Access::ReadOnly);

readwrite_h =

mv.getLocalViewHost(

Tpetra::Access::ReadWrite);

write_h =

mv.getLocalViewHost(

Tpetra::Access::OverwriteAll);

}

Access tags allow Tpetra to manage sync/modify status for users

MultiVector: Update code to remove old interfaces [TUG ’21]

For now, most interfaces remain

• Get an ArrayRCP (1D or 2D):
• getData, getDataNonConst

• get1dView, get1dViewNonConst

• get2dView, get2dViewNonConst

• Get a single column as Vector:
• getVector, getVectorNonConst

Removed before Trilinos 13.4
• Tpetra::withLocalAccess

• Tpetra::for_each

• Tpetra::transform

Removed by Trilinos 13.4

• Accessors without Access tags
• getLocalViewHost()

• getLocalViewDevice()

• getLocalView<>()

• getLocalBlock()

• Sync/modify now handled by MultiVector
• mv.sync_host(), mv.sync_device(),

mv.sync<>()

• mv.modify_host(), mv.modify_device(),

mv.modify<>()

• mv.clear_sync_state()

Asynchronous Import/Export [NEW]

• Motivation
• Import/Export transfer data from one distributed object (Tpetra::DistObject) to another

• Let’s say you have many MultiVectors to do import on …

• What if you want to overlap communication?
• Launch sends for multiple DistObjects simultaneously

• Launch sends and do some other computation while you wait

• Synchronous API
• Do the complete import, don’t return until it’s finished: DistObject::doImport

• New asynchronous API
• Pack data and kick off sends: DistObject::beginImport

• (Optionally) check if data has arrived and is ready to unpack: DistObject::transferArrived

• Unpack and combine data: DistObject::endImport

• Backend improvements mean each DistObject handles communication separately
• BUT, can still share the same communication plan from the importer (expensive to create)

17

Lead developer: Timothy Smith

Prototype: On-node graph assembly [NEW]

• For on-node matrix assembly, we’ve had an interface for quite some time…
• Grab the Kokkos::SparseCrsMatrix and work on that directly.

• But how do you assembly a Graph on-node?
• For many apps, host-assembly suffices --- the connectivity never changes.

• But some apps have Graphs that change over time.

• Brian Kelley has been working on a FEM-centric prototype for graph assembly:

• Still in development: Watch for more info at next EuroTUG.

18

RCP<CrsGraph> Tpetra::assembleFEGraph(
RCP<Map> rowMap,
View<GO**, Node::memory_space> ownedElements,
View<GO**, Node::memory_space> ghostElements);

Lead developer: Brian Kelley

Improved BlockCrsMatrix Support [NEW]

• Tpetra::BlockCrsMatrix was designed to support fixed-sized, small, blocks, e.g., 5x5.

• Uses a CrsGraph on nodes (groups of dofs) for the blocked problem --- less pointer
chasing than CrsGraph for each individual dof.

• New features
• Transpose operation.

• Sparse matrix-matrix multiplication.

• Enables blocks-through-the-whole-hierarchy in certain MueLu code-paths.

• Still in development: Should be in Trilinos/develop by end of CY22.

19

Lead developer: Conrad Clevenger

Performance Monitoring [NEW]

• Nightly performance testing on: Intel CPU, ARM CPU, Power9/A100 (NVIDIA),
EPYC/MI250 (AMD).

• Performance tests:

• Tpetra SpMV.

• Tpetra FE assembly.

• MiniEM (Maxwell CG+MueLu).

• Abnormal Energy (GMRES + ILU(3) w/ overlap 2).

• Checked by humans every Tuesday.

• Goals: Work towards automatic changepoint detection, more app-relevant tests.

20

Lead developers: Brian Kelley / Jonathan Hu

SAMPLE

Thank you for your time!

• The last few years in Tpetra have been full of new developments!

• New architectures, UVM-free Cuda, overlapping halo exchanges and more!

• Is there something you want to see in Tpetra & Data services? No guarantees, but
please feel free to ask (or submit a patch)!

21

