
ORNL is managed by UT-Battelle LLC
for the US Department of Energy

Kokkos Tutorial: Advanced Topics

Damien Lebrun-Grandié

June 27, 2023 2/77

Outline

I Hierarchical Parallelism

I Tools: Profiling and Debugging

June 27, 2023 3/77

Hierarchical parallelism

Finding and exploiting more parallelism in your computations.

Learning objectives:

I Similarities and di↵erences between outer and inner levels of
parallelism

I Thread teams (league of teams of threads)

I Performance improvement with well-coordinated teams

June 27, 2023 4/77

Example: inner product (0)

(Flat parallel) Kernel:
Kokkos :: parallel_reduce("yAx",N,

KOKKOS_LAMBDA (const int row , double & valueToUpdate) {
double thisRowsSum = 0;
for (int col = 0; col < M; ++col) {

thisRowsSum += A(row ,col) * x(col);
}
valueToUpdate += y(row) * thisRowsSum;

}, result);

Problem: What if we don’t have
enough rows to saturate the GPU?

Solutions?
I Atomics

I Thread teams

June 27, 2023 4/77

Example: inner product (0)

(Flat parallel) Kernel:
Kokkos :: parallel_reduce("yAx",N,

KOKKOS_LAMBDA (const int row , double & valueToUpdate) {
double thisRowsSum = 0;
for (int col = 0; col < M; ++col) {

thisRowsSum += A(row ,col) * x(col);
}
valueToUpdate += y(row) * thisRowsSum;

}, result);

Problem: What if we don’t have
enough rows to saturate the GPU?

Solutions?
I Atomics

I Thread teams

June 27, 2023 4/77

Example: inner product (0)

(Flat parallel) Kernel:
Kokkos :: parallel_reduce("yAx",N,

KOKKOS_LAMBDA (const int row , double & valueToUpdate) {
double thisRowsSum = 0;
for (int col = 0; col < M; ++col) {

thisRowsSum += A(row ,col) * x(col);
}
valueToUpdate += y(row) * thisRowsSum;

}, result);

Problem: What if we don’t have
enough rows to saturate the GPU?

Solutions?

I Atomics

I Thread teams

June 27, 2023 4/77

Example: inner product (0)

(Flat parallel) Kernel:
Kokkos :: parallel_reduce("yAx",N,

KOKKOS_LAMBDA (const int row , double & valueToUpdate) {
double thisRowsSum = 0;
for (int col = 0; col < M; ++col) {

thisRowsSum += A(row ,col) * x(col);
}
valueToUpdate += y(row) * thisRowsSum;

}, result);

Problem: What if we don’t have
enough rows to saturate the GPU?

Solutions?
I Atomics

I Thread teams

June 27, 2023 5/77

Example: inner product (1)

Atomics kernel:
Kokkos :: parallel_for("yAx", N*M,

KOKKOS_LAMBDA (const size_t index) {
const int row = extractRow(index);
const int col = extractCol(index);
atomic_add (& result , y(row) * A(row ,col) * x(col));

});

Problem: Poor performance

June 27, 2023 5/77

Example: inner product (1)

Atomics kernel:
Kokkos :: parallel_for("yAx", N*M,

KOKKOS_LAMBDA (const size_t index) {
const int row = extractRow(index);
const int col = extractCol(index);
atomic_add (& result , y(row) * A(row ,col) * x(col));

});

Problem: Poor performance

June 27, 2023 6/77

Example: inner product (2)

Using an atomic with every element is doing scalar integration with
atomics. (See module 3)

Instead, you could envision doing a large number of
parallel reduce kernels.

for each row
Functor functor(row , ...);
parallel_reduce(M, functor);

}

This is an example of hierarchical work.

Important concept: Hierarchical parallelism

Algorithms that exhibit hierarchical structure can exploit
hierarchical parallelism with thread teams.

June 27, 2023 6/77

Example: inner product (2)

Using an atomic with every element is doing scalar integration with
atomics. (See module 3)

Instead, you could envision doing a large number of
parallel reduce kernels.

for each row
Functor functor(row , ...);
parallel_reduce(M, functor);

}

This is an example of hierarchical work.

Important concept: Hierarchical parallelism

Algorithms that exhibit hierarchical structure can exploit
hierarchical parallelism with thread teams.

June 27, 2023 7/77

Example: inner product (3)

Important concept: Thread team

A collection of threads which are guaranteed to be executing
concurrently and can synchronize.

High-level strategy:
1. Do one parallel launch of N teams.

2. Each team handles a row.

3. The threads within teams perform a reduction.

4. The thread teams perform a reduction.

June 27, 2023 7/77

Example: inner product (3)

Important concept: Thread team

A collection of threads which are guaranteed to be executing
concurrently and can synchronize.

High-level strategy:
1. Do one parallel launch of N teams.

2. Each team handles a row.

3. The threads within teams perform a reduction.

4. The thread teams perform a reduction.

June 27, 2023 8/77

Example: inner product (4)

The final hierarchical parallel kernel:

parallel_reduce("yAx",
team_policy(N, Kokkos ::AUTO),

KOKKOS_LAMBDA (const member_type & teamMember , double & update) {
int row = teamMember.league_rank ();

double thisRowsSum = 0;
parallel_reduce(TeamThreadRange(teamMember , M),

[=] (int col, double & innerUpdate) {
innerUpdate += A(row, col) * x(col);

}, thisRowsSum);

if (teamMember.team_rank () == 0) {
update += y(row) * thisRowsSum;

}
}, result);

June 27, 2023 9/77

TeamPolicy (0)

Important point

Using teams is changing the execution policy.

“Flat parallelism” uses RangePolicy:

We specify a total amount of work.

// total work = N
parallel_for("Label",

RangePolicy <ExecutionSpace >(0,N), functor);

“Hierarchical parallelism” uses TeamPolicy:

We specify a team size and a number of teams.

// total work = numberOfTeams * teamSize
parallel_for("Label",

TeamPolicy <ExecutionSpace >(numberOfTeams , teamSize), functor);

June 27, 2023 9/77

TeamPolicy (0)

Important point

Using teams is changing the execution policy.

“Flat parallelism” uses RangePolicy:

We specify a total amount of work.

// total work = N
parallel_for("Label",

RangePolicy <ExecutionSpace >(0,N), functor);

“Hierarchical parallelism” uses TeamPolicy:

We specify a team size and a number of teams.

// total work = numberOfTeams * teamSize
parallel_for("Label",

TeamPolicy <ExecutionSpace >(numberOfTeams , teamSize), functor);

June 27, 2023 10/77

TeamPolicy (1)

Important point

When using teams, functor operators receive a team member.

using member_type = typename TeamPolicy <ExecSpace >:: member_type;

void operator ()(const member_type & teamMember) {
// How many teams are there?
const unsigned int league_size = teamMember.league_size ();

// Which team am I on?
const unsigned int league_rank = teamMember.league_rank ();

// How many threads are in the team?
const unsigned int team_size = teamMember.team_size ();

// Which thread am I on this team?
const unsigned int team_rank = teamMember.team_rank ();

// Make threads in a team wait on each other:
teamMember.team_barrier ();

}

June 27, 2023 11/77

TeamThreadRange (0)

First attempt at exercise:

operator () (member_type & teamMember) {
const size_t row = teamMember.league_rank ();
const size_t col = teamMember.team_rank ();
atomic_add (& result ,y(row) * A(row ,col) * x(entry));

}

I When team size 6= number of columns, how are units of work
mapped to team’s member threads? Is the mapping
architecture-dependent?

June 27, 2023 11/77

TeamThreadRange (0)

First attempt at exercise:

operator () (member_type & teamMember) {
const size_t row = teamMember.league_rank ();
const size_t col = teamMember.team_rank ();
atomic_add (& result ,y(row) * A(row ,col) * x(entry));

}

I When team size 6= number of columns, how are units of work
mapped to team’s member threads? Is the mapping
architecture-dependent?

June 27, 2023 12/77

TeamThreadRange (1)

Second attempt at exercise:

Divide row length among team members.

operator () (member_type & teamMember) {
const size_t row = teamMember.league_rank ();

int begin = teamMember.team_rank ();
for(int col = begin; col < M; col += teamMember.team_size ()) {

atomic_add (& result , y(row) * A(row ,col) * x(entry));
}

}

I Still bad because atomic add performs badly under high
contention, how can team’s member threads performantly
cooperate for a nested reduction?

I On CPUs you get a bad data access pattern: this hardcodes
coalesced access, but not caching.

June 27, 2023 12/77

TeamThreadRange (1)

Second attempt at exercise:

Divide row length among team members.

operator () (member_type & teamMember) {
const size_t row = teamMember.league_rank ();

int begin = teamMember.team_rank ();
for(int col = begin; col < M; col += teamMember.team_size ()) {

atomic_add (& result , y(row) * A(row ,col) * x(entry));
}

}

I Still bad because atomic add performs badly under high
contention, how can team’s member threads performantly
cooperate for a nested reduction?

I On CPUs you get a bad data access pattern: this hardcodes
coalesced access, but not caching.

June 27, 2023 13/77

TeamThreadRange (2)

We shouldn’t be hard-coding the work mapping...

operator () (member_type & teamMember , double & update) {
const int row = teamMember.league_rank ();
double thisRowsSum;
‘‘do a reduction ’’(‘‘over M columns ’’,

[=] (const int col) {
thisRowsSum += A(row ,col) * x(col);

});
if (teamMember.team_rank () == 0) {

update += (row) * thisRowsSum;
}

}

If this were a parallel execution,
we’d use Kokkos::parallel reduce.

Key idea: this is a parallel execution.

) Nested parallel patterns

June 27, 2023 13/77

TeamThreadRange (2)

We shouldn’t be hard-coding the work mapping...

operator () (member_type & teamMember , double & update) {
const int row = teamMember.league_rank ();
double thisRowsSum;
‘‘do a reduction ’’(‘‘over M columns ’’,

[=] (const int col) {
thisRowsSum += A(row ,col) * x(col);

});
if (teamMember.team_rank () == 0) {

update += (row) * thisRowsSum;
}

}

If this were a parallel execution,
we’d use Kokkos::parallel reduce.

Key idea: this is a parallel execution.

) Nested parallel patterns

June 27, 2023 13/77

TeamThreadRange (2)

We shouldn’t be hard-coding the work mapping...

operator () (member_type & teamMember , double & update) {
const int row = teamMember.league_rank ();
double thisRowsSum;
‘‘do a reduction ’’(‘‘over M columns ’’,

[=] (const int col) {
thisRowsSum += A(row ,col) * x(col);

});
if (teamMember.team_rank () == 0) {

update += (row) * thisRowsSum;
}

}

If this were a parallel execution,
we’d use Kokkos::parallel reduce.

Key idea: this is a parallel execution.

) Nested parallel patterns

June 27, 2023 13/77

TeamThreadRange (2)

We shouldn’t be hard-coding the work mapping...

operator () (member_type & teamMember , double & update) {
const int row = teamMember.league_rank ();
double thisRowsSum;
‘‘do a reduction ’’(‘‘over M columns ’’,

[=] (const int col) {
thisRowsSum += A(row ,col) * x(col);

});
if (teamMember.team_rank () == 0) {

update += (row) * thisRowsSum;
}

}

If this were a parallel execution,
we’d use Kokkos::parallel reduce.

Key idea: this is a parallel execution.

) Nested parallel patterns

June 27, 2023 14/77

TeamThreadRange (3)

TeamThreadRange:

operator () (const member_type & teamMember , double & update) {
const int row = teamMember.league_rank ();
double thisRowsSum;
parallel_reduce(TeamThreadRange(teamMember , M),

[=] (const int col , double & thisRowsPartialSum) {
thisRowsPartialSum += A(row , col) * x(col);

}, thisRowsSum);
if (teamMember.team_rank () == 0) {

update += y(row) * thisRowsSum;
}

}

I The mapping of work indices to threads is
architecture-dependent.

I The amount of work given to the TeamThreadRange need
not be a multiple of the team size.

I Intrateam reduction handled by Kokkos.

June 27, 2023 14/77

TeamThreadRange (3)

TeamThreadRange:

operator () (const member_type & teamMember , double & update) {
const int row = teamMember.league_rank ();
double thisRowsSum;
parallel_reduce(TeamThreadRange(teamMember , M),

[=] (const int col , double & thisRowsPartialSum) {
thisRowsPartialSum += A(row , col) * x(col);

}, thisRowsSum);
if (teamMember.team_rank () == 0) {

update += y(row) * thisRowsSum;
}

}

I The mapping of work indices to threads is
architecture-dependent.

I The amount of work given to the TeamThreadRange need
not be a multiple of the team size.

I Intrateam reduction handled by Kokkos.

June 27, 2023 15/77

Nested parallelism

Anatomy of nested parallelism:

parallel_outer("Label",
TeamPolicy <ExecutionSpace >(numberOfTeams , teamSize),
KOKKOS_LAMBDA (const member_type & teamMember [, . . .]) {

/* beginning of outer body */
parallel_inner(

TeamThreadRange(teamMember , thisTeamsRangeSize),
[=] (const unsigned int indexWithinBatch [, . . .]) {

/* inner body */
} [, . . .]);

/* end of outer body */
} [, . . .]);

I parallel outer and parallel inner may be any
combination of for and/or reduce.

I The inner lambda may capture by reference, but
capture-by-value is recommended.

I The policy of the inner lambda is always a TeamThreadRange.

I TeamThreadRange cannot be nested.

June 27, 2023 16/77

What should the team size be?

In practice, you can let Kokkos decide:

parallel_something(
TeamPolicy <ExecutionSpace >(numberOfTeams , Kokkos ::AUTO),
/* functor */);

GPUs

I Special hardware available for coordination within a team.

I Within a team 32 (NVIDIA) or 64 (AMD) threads execute
“lock step.”

I Maximum team size: 1024; Recommended team size:
128/256

Intel Xeon Phi:

I Recommended team size: # hyperthreads per core

I Hyperthreads share entire cache hierarchy
a well-coordinated team avoids cache-thrashing

June 27, 2023 16/77

What should the team size be?

In practice, you can let Kokkos decide:

parallel_something(
TeamPolicy <ExecutionSpace >(numberOfTeams , Kokkos ::AUTO),
/* functor */);

GPUs

I Special hardware available for coordination within a team.

I Within a team 32 (NVIDIA) or 64 (AMD) threads execute
“lock step.”

I Maximum team size: 1024; Recommended team size:
128/256

Intel Xeon Phi:

I Recommended team size: # hyperthreads per core

I Hyperthreads share entire cache hierarchy
a well-coordinated team avoids cache-thrashing

June 27, 2023 16/77

What should the team size be?

In practice, you can let Kokkos decide:

parallel_something(
TeamPolicy <ExecutionSpace >(numberOfTeams , Kokkos ::AUTO),
/* functor */);

GPUs

I Special hardware available for coordination within a team.

I Within a team 32 (NVIDIA) or 64 (AMD) threads execute
“lock step.”

I Maximum team size: 1024; Recommended team size:
128/256

Intel Xeon Phi:

I Recommended team size: # hyperthreads per core

I Hyperthreads share entire cache hierarchy
a well-coordinated team avoids cache-thrashing

June 27, 2023 17/77

Exercise: TeamPolicy

Details:

I Location: Exercises/team policy/

I Replace RangePolicy<Space> with TeamPolicy<Space>

I Use AUTO for team size

I Make the inner loop a parallel reduce with TeamThreadRange
policy

I Experiment with the combinations of Layout, Space, N to view
performance

I Hint: what should the layout of A be?

Things to try:

I Vary problem size and number of rows (-S ...; -N ...)

I Compare behavior with Exercise 4 for very non-square matrices

I Compare behavior of CPU vs GPU

June 27, 2023 18/77

Reminder, Exercise #4 with Flat Parallelism

 0

 100

 200

 300

 400

 500

 600

 1 10 100 1000 10000 100000 1x106 1x107 1x108 1x109

Ba
nd

w
id

th
 (G

B/
s)

Number of Rows (N)

<y|Ax> Exercise 04 (Layout) Fixed Size
KNL: Xeon Phi 68c HSW: Dual Xeon Haswell 2x16c Pascal60: Nvidia GPU

HSW Left
HSW Right
KNL Left
KNL Right
Pascal60 Left
Pascal60 Right

coalesced

cached

uncoalesced

cached

uncached

June 27, 2023 19/77

Exercise: TeamPolicy

 0

 100

 200

 300

 400

 500

 600

 1 10 100 1000 10000 100000 1x106 1x107 1x108 1x109

Ba
nd

w
id

th
 (G

B/
s)

Number of Rows (N)

<y|Ax> Exercise 05 (Layout/Teams) Fixed Size
KNL: Xeon Phi 68c HSW: Dual Xeon Haswell 2x16c Pascal60: Nvidia GPU

HSW Left
HSW Right
KNL Left
KNL Right
Pascal60 Left
Pascal60 Right

coalesced

cached

cached

June 27, 2023 20/77

Three-level parallelism (0)

Exposing Vector Level Parallelism
I Optional third level in the hierarchy: ThreadVectorRange

I Can be used for parallel for, parallel reduce, or
parallel scan.

I Maps to vectorizable loop on CPUs or (sub-)warp level
parallelism on GPUs.

I Enabled with a runtime vector length argument to
TeamPolicy

I There is no explicit access to a vector lane ID.

I Depending on the backend the full global parallel region has
active vector lanes.

I TeamVectorRange uses both thread and vector parallelism.

June 27, 2023 21/77

Three-level parallelism (1)
Anatomy of nested parallelism:

parallel_outer("Label",
TeamPolicy <>(numberOfTeams , teamSize , vectorLength),
KOKKOS_LAMBDA (const member_type & teamMember [, . . .]) {

/* beginning of outer body */
parallel_middle(

TeamThreadRange(teamMember , thisTeamsRangeSize),
[=] (const int indexWithinBatch [, . . .]) {

/* begin middle body */
parallel_inner(

ThreadVectorRange(teamMember , thisVectorRangeSize),
[=] (const int indexVectorRange [, . . .]) {

/* inner body */
} [,) ;

/∗ end midd l e body ∗/
}[, ...]) ;

p a r a l l e l m i d d l e (
TeamVectorRange (teamMember , someSize) ,

[=] (con s t i n t indexTeamVector [, . . .]) {
/∗ ne s t ed body ∗/

} [, . . .]) ;
/∗ end o f ou t e r body ∗/

}[, ...]) ;

June 27, 2023 22/77

Sum sanity checks (0)

Question: What will the value of totalSum be?

int totalSum = 0;
parallel_reduce("Sum", RangePolicy <>(0, numberOfThreads),

KOKKOS_LAMBDA (size_t& index , int& partialSum) {
int thisThreadsSum = 0;
for (int i = 0; i < 10; ++i) {

++ thisThreadsSum;
}
partialSum += thisThreadsSum;

}, totalSum);

totalSum = numberOfThreads * 10

June 27, 2023 22/77

Sum sanity checks (0)

Question: What will the value of totalSum be?

int totalSum = 0;
parallel_reduce("Sum", RangePolicy <>(0, numberOfThreads),

KOKKOS_LAMBDA (size_t& index , int& partialSum) {
int thisThreadsSum = 0;
for (int i = 0; i < 10; ++i) {

++ thisThreadsSum;
}
partialSum += thisThreadsSum;

}, totalSum);

totalSum = numberOfThreads * 10

June 27, 2023 23/77

Sum sanity checks (1)

Question: What will the value of totalSum be?

int totalSum = 0;
parallel_reduce("Sum", TeamPolicy <>(numberOfTeams , team_size),

KOKKOS_LAMBDA (member_type& teamMember , int& partialSum) {
int thisThreadsSum = 0;
for (int i = 0; i < 10; ++i) {

++ thisThreadsSum;
}
partialSum += thisThreadsSum;

}, totalSum);

totalSum = numberOfTeams * team size * 10

June 27, 2023 23/77

Sum sanity checks (1)

Question: What will the value of totalSum be?

int totalSum = 0;
parallel_reduce("Sum", TeamPolicy <>(numberOfTeams , team_size),

KOKKOS_LAMBDA (member_type& teamMember , int& partialSum) {
int thisThreadsSum = 0;
for (int i = 0; i < 10; ++i) {

++ thisThreadsSum;
}
partialSum += thisThreadsSum;

}, totalSum);

totalSum = numberOfTeams * team size * 10

June 27, 2023 24/77

Sum sanity checks (2)

Question: What will the value of totalSum be?

int totalSum = 0;
parallel_reduce("Sum", TeamPolicy <>(numberOfTeams , team_size),

KOKKOS_LAMBDA (member_type& teamMember , int& partialSum) {
int thisTeamsSum = 0;
parallel_reduce(TeamThreadRange(teamMember , team_size),

[=] (const int index , int& thisTeamsPartialSum) {
int thisThreadsSum = 0;
for (int i = 0; i < 10; ++i) {

++ thisThreadsSum;
}
thisTeamsPartialSum += thisThreadsSum;

}, thisTeamsSum);
partialSum += thisTeamsSum;

}, totalSum);

totalSum = numberOfTeams * team size * team size * 10

June 27, 2023 24/77

Sum sanity checks (2)

Question: What will the value of totalSum be?

int totalSum = 0;
parallel_reduce("Sum", TeamPolicy <>(numberOfTeams , team_size),

KOKKOS_LAMBDA (member_type& teamMember , int& partialSum) {
int thisTeamsSum = 0;
parallel_reduce(TeamThreadRange(teamMember , team_size),

[=] (const int index , int& thisTeamsPartialSum) {
int thisThreadsSum = 0;
for (int i = 0; i < 10; ++i) {

++ thisThreadsSum;
}
thisTeamsPartialSum += thisThreadsSum;

}, thisTeamsSum);
partialSum += thisTeamsSum;

}, totalSum);

totalSum = numberOfTeams * team size * team size * 10

June 27, 2023 25/77

Restricting Execution: single pattern

The single pattern can be used to restrict execution

I Like parallel patterns it takes a policy, a lambda, and
optionally a broadcast argument.

I Two policies: PerTeam and PerThread.

I Equivalent to OpenMP single directive with nowait

// Restrict to once per thread
single(PerThread(teamMember), [&] () {

// code
});

// Restrict to once per team with broadcast
int broadcastedValue = 0;
single(PerTeam(teamMember), [&] (int& broadcastedValue_local) {

broadcastedValue_local = special value assigned by one;
}, broadcastedValue);
// Now everyone has the special value

June 27, 2023 26/77

Exercise: TeamVectorLoop

The previous example was extended with an outer loop over
“Elements” to expose a third natural layer of parallelism.

Details:

I Location: Exercises/team vector loop/

I Use the single policy instead of checking team rank

I Parallelize all three loop levels.

Things to try:

I Vary problem size and number of rows (-S ...; -N ...)

I Compare behavior with TeamPolicy Exercise for very non-square
matrices

I Compare behavior of CPU vs GPU

June 27, 2023 27/77

Exercise: TeamVectorLoop

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1 10 100 1000 10000 100000 1x106

Ba
nd

w
id

th
 (G

B/
s)

Number of Rows (N)

<y|Ax> Exercise 06 (Three Level Parallelism) Fixed Size
KNL: Xeon Phi 68c HSW: Dual Xeon Haswell 2x16c Pascal60: Nvidia GPU

2L HSW Begin
3L HSW

2L KNL Begin
3L KNL

2L Pascal60 Begin
3L Pascal60

June 27, 2023 28/77

Section Summary

I Hierarchical work can be parallelized via hierarchical
parallelism.

I Hierarchical parallelism is leveraged using thread teams
launched with a TeamPolicy.

I Team “worksets” are processed by a team in nested
parallel for (or reduce or scan) calls with a
TeamThreadRange, ThreadVectorRange, and
TeamVectorRange policy.

I Execution can be restricted to a subset of the team with the
single pattern using either a PerTeam or PerThread policy.

June 27, 2023 29/77

Kokkos Tools

Leveraging Kokkos’ built-in instrumentation.

Learning objectives:

I The need for Kokkos-aware tools.

I How instrumentation helps.

I Simple profiling tools.

I Simple debugging tools.

June 27, 2023 30/77

Profiling C++ Code

Output from NVIDIA NVProf for Trilinos Tpetra

What are those Kernels doing?

June 27, 2023 30/77

Profiling C++ Code

Output from NVIDIA NVProf for Trilinos Tpetra

What are those Kernels doing?

June 27, 2023 31/77

Why is it so bad?

Generic code obscures what is happening from the tools
Historically a lot of profiling tools are coming from a Fortran and C
world:

I Focused on functions and variables
I C++ has a lot of other concepts:

I Classes with member functions
I Inheritance
I Template Metaprogramming

I Abstraction Models (Generic Programming) obscure things
I From a profiler perspective interesting stu↵ happens in the

abstraction layer (e.g. #pragma omp parallel)
I Symbol names get really complex due to deep template layers

June 27, 2023 32/77

Instrumentation to the Rescue

Instrumentation enables context information to reach tools.

Most profiling tools have an instrumentation interface

I E.g. nvtx for NVIDIA, ITT for Intel.

I Allows to name regions

I Sometimes can mark up memory operations.

KokkosP

Kokkos has its own instrumentation interface KokkosP, which can
be used to write tools.

I Knows about parallel dispatch

I Knows about allocations, deallocations and deep copy

I Provides region markers

I Leverages naming information (kernels, Views)

June 27, 2023 32/77

Instrumentation to the Rescue

Instrumentation enables context information to reach tools.

Most profiling tools have an instrumentation interface

I E.g. nvtx for NVIDIA, ITT for Intel.

I Allows to name regions

I Sometimes can mark up memory operations.

KokkosP

Kokkos has its own instrumentation interface KokkosP, which can
be used to write tools.

I Knows about parallel dispatch

I Knows about allocations, deallocations and deep copy

I Provides region markers

I Leverages naming information (kernels, Views)

June 27, 2023 33/77

The Kokkos Tools

There are two components to Kokkos Tools: the KokkosP
instrumentation interface and the actual Tools.

KokkosP Interface

I The internal instrumentation layer of Kokkos.

I Always available even in release builds.

I Zero overhead if no tool is loaded.

Kokkos Tools

I Tools leveraging the KokkosP instrumentation layer.
I Are loaded at runtime by Kokkos.

I Set KOKKOS TOOLS LIBS environment variable to load a shared
library.

I Compile tools into the executable and use the API callback
setting mechanism.

June 27, 2023 34/77

How does it Work
Download tools from
https://github.com/kokkos/kokkos-tools

I Tools are largely independent of the Kokkos configuration
I May need to use the same C++ standard library.
I Use the same tool for CUDA and OpenMP code for example.

I We recommend you build the tools with CMake

cd kokkos -tools && cmake -B build
cmake --build build --parallel 4
cmake --install build --prefix /where/to/install/the/tools

Loading Tools:

I Set KOKKOS TOOLS LIBS environment variable to the full path
to the shared library of the tool.

I Kokkos dynamically loads symbols from the library during
initialize and fills function pointers.

I If no tool is loaded the overhead is a function pointer
comparison to nullptr.

https://github.com/kokkos/kokkos-tools

June 27, 2023 35/77

An Example Code

View <double*> a("A",N);
View <double*, HostSpace > h_a = create_mirror_view(a);

Profiling :: pushRegion("Setup");
parallel_for("Init_A",RangePolicy <h_exec_t >(0,N),

KOKKOS_LAMBDA(int i) { h_a(i) = i; });
deep_copy(a,h_a);
Profiling :: popRegion ();

Profiling :: pushRegion("Iterate");
for(int r=0; r<10; r++) {

View <double*> tmp("Tmp",N);
parallel_scan("K_1",RangePolicy <exec_t >(0,N),

KOKKOS_LAMBDA(int i, double& lsum , bool f) {
if(f) tmp(i) = lsum;
lsum += a(i);

});
double sum;
parallel_reduce("K_2",N, KOKKOS_LAMBDA(int i, double& lsum) {

lsum += tmp(i);
},sum);

}
Profiling :: popRegion ();

June 27, 2023 36/77

An Example Code: Nvprof
Output of: nvprof ./test.cuda

Let us make one larger:
_ZN6Kokkos4Impl33cuda_parallel_launch_local_memoryINS0
_14ParallelReduceINS0_18CudaFunctorAdapterIZ4mainEUliRdE
_NS_11RangePolicyIJNS_4CudaEEEEdvEES8_NS_11InvalidTypeES7_EEEEvT_

And demangled:
void Kokkos ::Impl:: cuda_parallel_launch_local_memory
<Kokkos ::Impl:: ParallelReduce <Kokkos ::Impl:: CudaFunctorAdapter
<main ::{ lambda(int , double &)#1} , Kokkos :: RangePolicy <Kokkos ::Cuda >,
double , void >, Kokkos ::Cuda , Kokkos :: InvalidType , Kokkos :: RangePolicy > >
(Kokkos ::Impl:: ParallelReduce <Kokkos ::Impl:: CudaFunctorAdapter <
main ::{ lambda(int , double &)#1}, Kokkos :: RangePolicy <Kokkos ::Cuda >,
double , void >, Kokkos ::Cuda , Kokkos :: InvalidType , Kokkos :: RangePolicy >)

June 27, 2023 36/77

An Example Code: Nvprof
Output of: nvprof ./test.cuda

Let us make one larger:
_ZN6Kokkos4Impl33cuda_parallel_launch_local_memoryINS0
_14ParallelReduceINS0_18CudaFunctorAdapterIZ4mainEUliRdE
_NS_11RangePolicyIJNS_4CudaEEEEdvEES8_NS_11InvalidTypeES7_EEEEvT_

And demangled:
void Kokkos ::Impl:: cuda_parallel_launch_local_memory
<Kokkos ::Impl:: ParallelReduce <Kokkos ::Impl:: CudaFunctorAdapter
<main ::{ lambda(int , double &)#1} , Kokkos :: RangePolicy <Kokkos ::Cuda >,
double , void >, Kokkos ::Cuda , Kokkos :: InvalidType , Kokkos :: RangePolicy > >
(Kokkos ::Impl:: ParallelReduce <Kokkos ::Impl:: CudaFunctorAdapter <
main ::{ lambda(int , double &)#1}, Kokkos :: RangePolicy <Kokkos ::Cuda >,
double , void >, Kokkos ::Cuda , Kokkos :: InvalidType , Kokkos :: RangePolicy >)

June 27, 2023 37/77

An Example Code

Aaa this is horrifying can’t we do better??

Lets use SimpleKernelTimer from Kokkos Tools:

I Simple tool producing a summary similar to nvprof

I Good way to get a rough overview of whats going on

I Writes a file HOSTNAME-PROCESSID.dat per process

I Use the reader accompanying the tool to read the data

Usage:

git clone git@github.com:kokkos/kokkos -tools
cd kokkos -tools/profiling/simple_kernel_timer
make
export KOKKOS_TOOLS_LIBS=${PWD}/ kp_kernel_timer.so
export PATH=${PATH}:${PWD}
cd ${WORKDIR}
./text.cuda
kp_reader *.dat

June 27, 2023 37/77

An Example Code

Aaa this is horrifying can’t we do better??

Lets use SimpleKernelTimer from Kokkos Tools:

I Simple tool producing a summary similar to nvprof

I Good way to get a rough overview of whats going on

I Writes a file HOSTNAME-PROCESSID.dat per process

I Use the reader accompanying the tool to read the data

Usage:

git clone git@github.com:kokkos/kokkos -tools
cd kokkos -tools/profiling/simple_kernel_timer
make
export KOKKOS_TOOLS_LIBS=${PWD}/ kp_kernel_timer.so
export PATH=${PATH}:${PWD}
cd ${WORKDIR}
./text.cuda
kp_reader *.dat

June 27, 2023 38/77

An Example Code
Output from SimpleKernelTimer:

Will introduce Regions later.

Kernel Naming

Naming Kernels avoid seeing confusing Profiler output!

June 27, 2023 38/77

An Example Code
Output from SimpleKernelTimer:

Will introduce Regions later.

Kernel Naming

Naming Kernels avoid seeing confusing Profiler output!

June 27, 2023 39/77

Revisiting Tpetra

Lets look at Tpetra again with the Simple Kernel Timer Loaded:

At the top we get Region output:

June 27, 2023 40/77

Revisiting Tpetra

Then we get kernel output:

June 27, 2023 41/77

Memory Utilization

Understanding MemorySpace Utilization is critical

Three simple tools for understanding memory utilization:

I MemoryHighWaterMark: just the maximum utilization for
each memory space.

I MemoryUsage: Timeline of memory usage.
I MemoryEvents: allocation, deallocation and deep copy.

I Name, Memory Space, Pointer, Size

June 27, 2023 42/77

Push/Pop Regions

Adding region markers to capture more code structure
Region Markers are helpful to:

I Find where time is spent outside of kernels.

I Group Kernels which belong together.
I Structure code profiles.

I For example bracket setup or solve phase.

Simple Push/Pop interface:

Kokkos :: Profiling :: pushRegion("Label");
...
Kokkos :: Profiling :: popRegion ();

June 27, 2023 42/77

Push/Pop Regions

Adding region markers to capture more code structure
Region Markers are helpful to:

I Find where time is spent outside of kernels.

I Group Kernels which belong together.
I Structure code profiles.

I For example bracket setup or solve phase.

Simple Push/Pop interface:

Kokkos :: Profiling :: pushRegion("Label");
...
Kokkos :: Profiling :: popRegion ();

June 27, 2023 43/77

Space Time Stack

The simplest tool to leverage regions is the Space Time Stack:

I Bottom Up and Top Down data representation

I Can do MPI aggregation if compiled with MPI support

I Also aggregates memory utilization info.

June 27, 2023 44/77

The Delayed Error Problem

Non-Blocking Dispatch implies asynchronous error reporting!

Profiling :: pushRegion("Iterate");
for(int r=0; r<10; r++) {

parallel_for("K_1" ,2*N, KOKKOS_LAMBDA(int i) {a(i) = i;});
printf("Passed point A\n");
double sum;
parallel_reduce("K_2",N, KOKKOS_LAMBDA(int i, double& lsum) {

lsum += a(i); },sum);
}
Profiling :: popRegion ();

Output of the run:

./test.cuda
Passed point A
terminate called after throwing an instance of ’std:: runtime_error ’

what (): cudaStreamSynchronize(m_stream) error(cudaErrorIllegalAddress):
an illegal memory access was encountered

Kokkos/kokkos/core/src/Cuda/Kokkos_Cuda_Instance.cpp :312
Traceback functionality not available
Aborted (core dumped)

June 27, 2023 45/77

Kernel Logger for Debugging

Debugging with Tools

Kokkos Tools can be used to implement Debugging functionality.

The KernelLogger is a tool to localize errors and check the actual
runtime flow of a code.

I As other tools it inserts fences - which check for errors.

I Prints out Kokkos operations as they happen.

Output from the above test case with KernelLogger:
KokkosP: Allocate <Cuda > name: A pointer: 0x7f598b800000 size: 8000000
KokkosP: Executing parallel -for kernel on device 0 with unique execution identifier 0
KokkosP: Kokkos ::View:: initialization [A]
KokkosP: Execution of kernel 0 is completed.
KokkosP: Entering profiling region: Iterate
KokkosP: Executing parallel -for kernel on device 0 with unique execution identifier 1
KokkosP: Iterate
KokkosP: K_1
terminate called after throwing an instance of ’std:: runtime_error ’

what (): cudaDeviceSynchronize () error(cudaErrorIllegalAddress): an illegal memory access was encountered /ascldap/users/crtrott/Kokkos/kokkos/core/src/Cuda/Kokkos_Cuda_Instance.cpp :143
Traceback functionality not available

June 27, 2023 45/77

Kernel Logger for Debugging

Debugging with Tools

Kokkos Tools can be used to implement Debugging functionality.

The KernelLogger is a tool to localize errors and check the actual
runtime flow of a code.

I As other tools it inserts fences - which check for errors.

I Prints out Kokkos operations as they happen.

Output from the above test case with KernelLogger:
KokkosP: Allocate <Cuda > name: A pointer: 0x7f598b800000 size: 8000000
KokkosP: Executing parallel -for kernel on device 0 with unique execution identifier 0
KokkosP: Kokkos ::View:: initialization [A]
KokkosP: Execution of kernel 0 is completed.
KokkosP: Entering profiling region: Iterate
KokkosP: Executing parallel -for kernel on device 0 with unique execution identifier 1
KokkosP: Iterate
KokkosP: K_1
terminate called after throwing an instance of ’std:: runtime_error ’

what (): cudaDeviceSynchronize () error(cudaErrorIllegalAddress): an illegal memory access was encountered /ascldap/users/crtrott/Kokkos/kokkos/core/src/Cuda/Kokkos_Cuda_Instance.cpp :143
Traceback functionality not available

June 27, 2023 45/77

Kernel Logger for Debugging

Debugging with Tools

Kokkos Tools can be used to implement Debugging functionality.

The KernelLogger is a tool to localize errors and check the actual
runtime flow of a code.

I As other tools it inserts fences - which check for errors.

I Prints out Kokkos operations as they happen.

Output from the above test case with KernelLogger:
KokkosP: Allocate <Cuda > name: A pointer: 0x7f598b800000 size: 8000000
KokkosP: Executing parallel -for kernel on device 0 with unique execution identifier 0
KokkosP: Kokkos ::View:: initialization [A]
KokkosP: Execution of kernel 0 is completed.
KokkosP: Entering profiling region: Iterate
KokkosP: Executing parallel -for kernel on device 0 with unique execution identifier 1
KokkosP: Iterate
KokkosP: K_1
terminate called after throwing an instance of ’std:: runtime_error ’

what (): cudaDeviceSynchronize () error(cudaErrorIllegalAddress): an illegal memory access was encountered /ascldap/users/crtrott/Kokkos/kokkos/core/src/Cuda/Kokkos_Cuda_Instance.cpp :143
Traceback functionality not available

June 27, 2023 46/77

The Standard Profiling Approach

The standard Kokkos profiling approach

Understand Kokkos Utilization (SimpleKernelTimer)

I Check how much time in kernels

I Identify HotSpot Kernels

Run Memory Analysis (MemoryEvents)

I Are there many allocations/deallocations - 5000/s is OK.

I Identify temporary allocations which could be hoisted

Identify Serial Code Regions (SpaceTimeStack)

I Add Profiling Regions

I Find Regions with low fraction of time spend in Kernels

Dive into individual Kernels

I Use connector tools (next subsection) to analyze kernels.

I E.g. use roof line analysis to find underperforming code.

June 27, 2023 47/77

Exercise - Terrible MiniMD

Analyse a MiniMD variant with a serious performance issue.

Details:

I Location: Exercises/tools minimd/

I Use standard Profiling Approach.

I Find the code location which causes the performance issue.

I Run with miniMD.exe -s 20

What should happen:

I Performance should be

I About 50% of time in a Force compute kernel

I About 25% in neighbor list creation

June 27, 2023 48/77

Basic Tool Summary

I Kokkos Tools provide an instrumentation interface KokkosP
and Tools to leverage it.

I The interface is always available - even in release builds.

I Zero overhead if no tool is loaded during the run.

I Dynamically load a tool via setting KOKKOS TOOLS LIBS

environment variable.

I Set callbacks directly in code for tools compiled into the
executable.

June 27, 2023 49/77

Vendor and Independent

Profiling GUIs

Connector tools translating Kokkos instrumentation.

Learning objectives:

I Understand what connectors provide

I Understand what tools are available

June 27, 2023 50/77

Using Third Party Tools

Kokkos Tools can also be used to interface and augment existing
profiling tools.

I Provide context information like Kernel names

I Turn data collection on and o↵ in a tool independent way

There are two ways this happens:
I Load a specific connector tool like nvprof-connector

I For example for Nsight Compute and VTune

I Tools themselves know about Kokkos instrumentation
I For example Tau

June 27, 2023 51/77

Connecting to Tools - Nsight Compute

Use the nvprof-connector to interact with NVIDIA tools

Translates KokkosP hooks into NVTX instrumentation

I Works with all NVIDIA tools which understand NVTX

I Translates Regions and Kernel Dispatches

Initially wasn’t very useful since regions are shown independently of
kernels

But CUDA 11 added renaming of Kernels based on Kokkos
User feedback!

June 27, 2023 51/77

Connecting to Tools - Nsight Compute

Use the nvprof-connector to interact with NVIDIA tools

Translates KokkosP hooks into NVTX instrumentation

I Works with all NVIDIA tools which understand NVTX

I Translates Regions and Kernel Dispatches

Initially wasn’t very useful since regions are shown independently of
kernels

But CUDA 11 added renaming of Kernels based on Kokkos
User feedback!

June 27, 2023 51/77

Connecting to Tools - Nsight Compute

Use the nvprof-connector to interact with NVIDIA tools

Translates KokkosP hooks into NVTX instrumentation

I Works with all NVIDIA tools which understand NVTX

I Translates Regions and Kernel Dispatches

Initially wasn’t very useful since regions are shown independently of
kernels

But CUDA 11 added renaming of Kernels based on Kokkos
User feedback!

June 27, 2023 52/77

Connecting to Tools - Nsight Compute

To enable kernel renaming you need to:

I Load the nvprof-connector via setting KOKKOS TOOLS LIBS in
the run configuration.

I Go to Tools > Preferences > Rename CUDA Kernels by

NVTX and set it on.

This does a few things:

I User Labels are now used as the primary name.
I You can still expand the row to see which actual kernels are

grouped under it.
I For example if multiple kernels have the same label

I The bars are now named Label/GLOBAL FUNCTION NAME.

June 27, 2023 53/77

Connecting to Tools - Vtune
To enable kernel renaming you need to:

I Load the vtune-connector via setting KOKKOS TOOLS LIBS in
the run configuration.

I Choose the Frame Domain / Frame / Function / Call

Stack grouping in the bottom up panel.

This does a few things:

I User Labels are now used as the primary name.

I You can expand to see individual kernel invocations

I You can dive further into an individual kernel invocation to
see function calls within.

I Focus in on a kernel or individual invocation and do more
detailed analysis.

Also available: vtune-focused-connector:

I Used in conjunction with kernel-filter tool.

I Restricts profiling to a subset of kernels.

June 27, 2023 54/77

Connecting to Tools - Vtune

June 27, 2023 55/77

Connecting to Tools - Tau

TAU is a widely used Profiling Tool supporting most
platforms.

Tau supports:

I profiling

I sampling

I tracing

You do not need a connector tool for Tau!

To enable TAU’s Kokkos integration simply

I Download and install TAU

I Launch your program with tau exec (which will set
KOKKOS TOOLS LIBS for you)

For questions contact tau-users@cs.uoregon.edu

https://www.cs.uoregon.edu/research/tau/downloads.php

June 27, 2023 56/77

Connecting to Tools - Tau

Tau will use Kokkos instrumentation to display names and regions
as defined by Kokkos:

June 27, 2023 57/77

Timemory

Timemory is a modular toolkit provided by NERSC that aims to
simplify the creation of performance analysis tools by providing a
common design pattern of classes which encapsulate how to
perform a start+stop/sample/entry of ”something”. Each of these
components (from timers to HW counters to other profilers) can
be used individually with zero overhead from the library. It also
provides wrappers and utilities for handling multiple components
generically, data storage, writing JSON, comparing outputs, etc.

As a by-product this design, the library provides an large set of
individual profiling libraries whose usage comes with the same ease
as using the simple-timer tool: setting KOKKOS TOOLS LIBS.

https://github.com/NERSC/timemory

June 27, 2023 58/77

Timemory

I It also provides novel capabilities other tools don’t, like
simultaneous CPU/GPU roofline modeling.

I The usage here is simple:
I spack install timemory +kokkos_tools +kokkos_build_config

[+mpi +cuda +cupti +papi +caliper ...]

I Wait 3 months while spack builds every software package ever
from scratch

I In <PREFIX>/lib/timemory/kokkos_tools/ there will be 5 to 30+
Kokkos profiling libraries

I Roofline modeling requires one additional setup
I timemory-roofline -T "TITLE"-t gpu_roofline -- <CMD>

I Where everything after -- is just running your application

I For more information:
https://github.com/NERSC/timemory

https://github.com/NERSC/timemory

June 27, 2023 59/77

Timemory

June 27, 2023 60/77

Other

I Caliper - Broad program analysis capabilities. UVM Profiling.

I HPCToolkit - Not a connector, but a sampling tool with great
Kokkos support

June 27, 2023 61/77

Connector Summary

I Connectors inject Kokkos specific information into vendor and
academic tools.

I Helps readability of profiles.

I Removes your need to put vendor specific instrumentation in
your code.

I Growing list of tools support Kokkos natively.

June 27, 2023 62/77

Custom Tools

How to write your own tools for the KokkosP interface.

Learning objectives:

I The KokkosP hooks

I Callback registration inside the application

I Throwaway debugging tools

June 27, 2023 63/77

Motivation

KokkosTools also allow you to write your own tools!

I Implement a simple C interface.

I Only implement what you want to use!

I Full access to the entire instrumentation.

But why would I want to do that?

I Profiling tools which know about your code structure and
properly categorize information.

I Add in situ analysis hooked into your CI system.

I Write debugging tools specific for your framework.

I Write throwaway debugging tools for larger apps, instead of
recompiling.

We will first walk through the hooks and then illustate with an
example.

June 27, 2023 63/77

Motivation

KokkosTools also allow you to write your own tools!

I Implement a simple C interface.

I Only implement what you want to use!

I Full access to the entire instrumentation.

But why would I want to do that?

I Profiling tools which know about your code structure and
properly categorize information.

I Add in situ analysis hooked into your CI system.

I Write debugging tools specific for your framework.

I Write throwaway debugging tools for larger apps, instead of
recompiling.

We will first walk through the hooks and then illustate with an
example.

June 27, 2023 64/77

Infrastructure and Initialization

Some Helper Classes

// Contains a unique device identifier.
struct KokkosPDeviceInfo { uint32_t deviceID; };

// Unique name of execution and memory spaces.
struct SpaceHandle { char name [64]; };

Initialization and Finalization hooks
extern "C" void kokkosp_init_library(

int loadseq , uint64_t version , uint32_t num_devinfos ,
KokkosPDeviceInfo* devinfos);

I Called during Kokkos::initialize

I Provides device ids used subsequently.

I Use this call to setup tool infrastructure.

extern "C" void kokkosp_finalize_library ();

I Called during Kokkos::finalize

I Usually used to output results.

June 27, 2023 64/77

Infrastructure and Initialization

Some Helper Classes

// Contains a unique device identifier.
struct KokkosPDeviceInfo { uint32_t deviceID; };

// Unique name of execution and memory spaces.
struct SpaceHandle { char name [64]; };

Initialization and Finalization hooks
extern "C" void kokkosp_init_library(

int loadseq , uint64_t version , uint32_t num_devinfos ,
KokkosPDeviceInfo* devinfos);

I Called during Kokkos::initialize

I Provides device ids used subsequently.

I Use this call to setup tool infrastructure.

extern "C" void kokkosp_finalize_library ();

I Called during Kokkos::finalize

I Usually used to output results.

June 27, 2023 65/77

Parallelism Hooks

extern "C" {
void kokkosp_begin_parallel_for(const char* name ,

uint32_t devid ,
uint64_t* kernid);

void kokkosp_begin_parallel_reduce(const char* name ,
uint32_t devid ,
uint64_t* kernid);

void kokkosp_begin_parallel_scan(const char* name ,
uint32_t devid ,
uint64_t* kernid);

};

I Called when a parallel dispatch is initiated.

I name is the user provided string or a typeid.

I kernid is set by the tool to match up with the end call.

extern "C" void kokkosp_end_parallel_for(uint64_t kernid);
extern "C" void kokkosp_end_parallel_reduce(uint64_t kernid);
extern "C" void kokkosp_end_parallel_scan(uint64_t kernid);

I Called when a parallel dispatch is done.

I kernid is the value the begin call set.

June 27, 2023 66/77

Memory Hooks

extern "C" void kokkosp_begin_deep_copy(
SpaceHandle dst_hndl , const char* dst_name , const void* dst_ptr ,
SpaceHandle src_hndl , const char* src_name , const void* src_ptr ,
uint64_t size);

I Called when a deep copy is started.

I Provides space handles, names, ptrs and size of allocations.

extern "C" void kokkosp_end_deep_copy ();

I Called when a deep copy is done.

extern "C" void kokkosp_allocate_data(SpaceHandle hndl ,
const char* name , void* ptr , uint64_t size);

extern "C" void kokkosp_deallocate_data(SpaceHandle hndl ,
const char* name , void* ptr , uint64_t size);

I Called when allocating or deallocating data.

June 27, 2023 67/77

Callback Registration

Sometimes it is useful to build a tool into an executable.

Callback Registration

Kokkos Tools provide a callback setting system to set tool
callbacks from within the application.

Takes the form of:
void set_HOOK_callback(HOOK_FUNCTION_PTR callback);

Where HOOK is one of
init finalize push_region pop_region begin_parallel_for
end_parallel_for begin_parallel_reduce end_parallel_reduce
begin_parallel_scan end_parallel_scan begin_fence end_fence
allocate_data deallocate_data begin_deep_copy end_deep_copy

One can also store a callback set, reload it and pause tool calls

EventSet get_callbacks (); void set_callbacks(EventSet);
void pause_tools (); void resume_tools ();

June 27, 2023 68/77

Callback Registration

Example:

#include <Kokkos_Core.hpp >
using Kokkos :: Profiling;
using Kokkos ::Tools :: Experimental;
using Kokkos;

void kokkosp_allocate_data(SpaceHandle space ,
const char* label , const void* const ptr , uint64_t size) {
printf("Allocate: [%s] %lu\n",label ,size);

}
void kokkosp_deallocate_data(SpaceHandle space ,

const char* label , const void* const ptr , uint64_t size) {
printf("Deallocate: [%s] %lu\n",label ,size);

}

int main(int argc , char* argv []) {
initialize(argc , argv);
set_allocate_data_callback(kokkosp_allocate_data);
set_deallocate_data_callback(kokkosp_deallocate_data);
...
finalize ();

}

June 27, 2023 69/77

Example: Throwaway Debugging Tool

Sometimes you just need to know what is in a View before and
after entering a kernel for the 5th time:

I The view is on the GPU and its on some rank of a large run.

I Recompiling the app takes hours.

Simple Kokkos tool could do it!
What we need:

I Store the pointer and size of the view with a specific label
when it gets allocated.

I Print the View when entering a kernel and before exiting it.

I Make sure the view didn’t get deallocated in the mean time.

June 27, 2023 69/77

Example: Throwaway Debugging Tool

Sometimes you just need to know what is in a View before and
after entering a kernel for the 5th time:

I The view is on the GPU and its on some rank of a large run.

I Recompiling the app takes hours.

Simple Kokkos tool could do it!
What we need:

I Store the pointer and size of the view with a specific label
when it gets allocated.

I Print the View when entering a kernel and before exiting it.

I Make sure the view didn’t get deallocated in the mean time.

June 27, 2023 70/77

Example: Throwaway Debugging Tool
Store the pointer:

int* data; uint64_t N; int count;
extern "C" void kokkosp_allocate_data(SpaceHandle handle ,

const char* name , void* ptr , uint64_t size) {
if(strcmp(name ,"PuppyWeights")==0) {

data = (int*)ptr +32; N = size; count = 0;
}}

Print the View:
void print_data () {

std::vector <int > hcpy(N);
cudaMemcpy(hcpy.data(),data ,N*sizeof(int));
for(int i=0;i<N;++i) printf("(%d %d)",i,hcpy[i]); printf("\n");

}
extern "C" void kokkosp_begin_parallel_for(const char* name ,

uint32_t , uint64_t* kernid) {
if(strcmp(name ,"PuppyOnCouch")==0) {

count ++; if(count ==5) print_data (); *kernid =1;
} else { *kernid = 0; }

}
extern "C" void kokkosp_end_parallel_for(uint64_t kernid) {

if(kernid == 1 && count ==5) print_data ();
}

June 27, 2023 71/77

TestCode

#include <Kokkos_Core.hpp >
#include <cmath >

int main(int argc , char* argv []) {
Kokkos :: initialize(argc , argv);
{

int N = argc > 1 ? atoi(argv [1]) : 12;
int R = argc > 2 ? atoi(argv [2]) : 10;
Kokkos ::View <double*> a("PuppyWeights",N);

for(int r=0; r<R; r++) {
Kokkos :: parallel_for("PuppyOnCouch",N,KOKKOS_LAMBDA(int i)

{ a(i) = i*r; });
}

}
Kokkos :: finalize ();

}

Output:

(0 0) (1 4) (2 8) (3 12)
(0 0) (1 5) (2 10) (3 15)

June 27, 2023 72/77

Hooks Summary

Implementing your own tools is easy!

I Simply implement the needed C callback functions.

I Only implement what you need.

I Goal is to make it simple enough so that one-o↵ tools are a
viable debugging help.

Callback registration for applications

I The callback registration system allows to embed tools in
applications.

I Store callback sets and restore them.

June 27, 2023 73/77

EuroTUG Day 2: Summary (0)

Hierarchal Parallelism

I Hierarchical work can be parallelized via hierarchical
parallelism.

I Hierarchical parallelism is leveraged using thread teams
launched with a TeamPolicy.

I Team “worksets” are processed by a team in nested
parallel for (or reduce or scan) calls with a
TeamThreadRange and ThreadVectorRange policy.

I Execution can be restricted to a subset of the team with the
single pattern using either a PerTeam or PerThread policy.

I Teams can be used to reduce contention for global resources
even in “flat” algorithms.

June 27, 2023 74/77

EuroTUG Day 2: Summary (1)

Kokkos Tools:

I Kokkos Tools provide an instrumentation interface KokkosP
and Tools to leverage it.

I The interface is always available - even in release builds.

I Zero overhead if no tool is loaded during the run.

I Dynamically load a tool via setting KOKKOS TOOLS LIBS

environment variable.

I Set callbacks in code for tools compiled into the executable.

Kokkos Connector Tools:

I Connectors inject Kokkos specific information into vendor and
academic tools.

I Helps readability of profiles.

I Removes need to put vendor specific instrumentation in codes.

I Growing list of tools support Kokkos natively.

June 27, 2023 75/77

EuroTUG Day 2: Summary (2)

Implementing your own tools is easy!

I Simply implement the needed C callback functions.

I Only implement what you need.

I The callback registration system allows to embed tools in
applications.

June 27, 2023 76/77

The Kokkos Lectures

The Kokkos Lectures

Watch the Kokkos Lectures for all of those and more in-depth
explanations or do them on your own.

I Module 1: Introduction, Building and Parallel Dispatch

I Module 2: Views and Spaces

I Module 3: Data Structures + MultiDimensional Loops

I Module 4: Hierarchical Parallelism

I Module 5: Tasking, Streams and SIMD

I Module 6: Internode: MPI and PGAS

I Module 7: Tools: Profiling, Tuning and Debugging

I Module 8: Kernels: Sparse and Dense Linear Algebra

https://kokkos.link/the-lectures

https://kokkos.link/the-lectures

June 27, 2023 77/77

Find More

Online Resources:
I https://github.com/kokkos:

I Primary Kokkos GitHub Organization

I https://kokkos.link/the-lectures:
I Slides, recording and Q&A for the Full Lectures

I https://github.com/kokkos/kokkos/wiki:
I Wiki including API reference

I https://kokkosteam.slack.com:
I Slack channel for Kokkos.
I Please join: fastest way to get your questions answered.
I Can whitelist domains, or invite individual people.

https://github.com/kokkos
https://kokkos.link/the-lectures
https://github.com/kokkos/kokkos/wiki
https://kokkosteam.slack.com

