
III. How to install Trilinos?

1 TriBITS: Tribal Build, Integrate, and Test System

2 TriBITS for building Trilinos

A. Heinlein, M. Mayr (TU Delft, UniBW) June 28, 2023 12/71

Different installation mechanisms

• Package manager of your operating system
• Trilinos is available through most package managers for Linux operating systems.
• However, when installing Trilinos via package manager, you do not have full control

over its configuration.
• Spack4

• Similar to a package manager, but with from-source-build-and-installation
• Easy to get started with, automatically takes care of dependencies
• Allows to maintain multiple versions of Trilinos on the same machine
• Tedious to prescribe your desired configuration

• Manual installation from source files
• In order to have full control over the configuration of Trilinos, it may be compiled and

installed from the source files.
• Especially recommended if you plan to modify Trilinos source code / develop in Trilinos

A. Heinlein, M. Mayr (TU Delft, UniBW) June 28, 2023 13/71

Dependencies

The dependencies result from the choice of TRILINOS packages.

Examples:

MPI — Message Passing Interface5

BLAS — Basic Linear Algebra Subprograms6

LAPACK — Linear Algebra PACKage7

Boost — Peer-reviewed portable C++ libraries8

METIS & ParMETIS — Graph Partitioning9

HDF5 — Hierarchical Data Format10

MUMPS — MUltifrontal Massively Parallel sparse direct Solver11

...
...

A. Heinlein, M. Mayr (TU Delft, UniBW) June 28, 2023 14/71

Installing Trilinos from source – the build system

Some observations and requirements:

• Trilinos is a large software project with many internal and external dependencies.
• These dependencies need to be managed properly, in particular, by a suitable build system.
• Trilinos’ package architecture allows but also requires software modularity.
• User needs to specify list of enabled/disabled packages.
• Automated checks for satisfaction of dependencies and modularity are necessary.

Build system
Trilinos uses TriBITS for configuration, build, installation and test management.

⇒ We ill now briefly look into TriBITS and learn how to use it to configure, build, and install
Trilinos with a user-chosen set of packages.

A. Heinlein, M. Mayr (TU Delft, UniBW) June 28, 2023 15/71

What is TriBITS?

Requirements for large software projects

• Multiple software repositories and distributed development teams
• Multiple compiled programming languages (C, C++, Fortran) and mixed-language

programs
• Multiple development and deployment platforms (Linux, MacOS, Super-Computers, etc.)
• Stringent software quality requirements

TriBITS = Tribal Build, Integrate, and Test System12

• Stand-alone build system for complex software projects
• Built on top of CMake
• TriBITS provides a custom CMake build & test framework

A. Heinlein, M. Mayr (TU Delft, UniBW) June 28, 2023 16/71

Why CMake?

• Open-source tools maintained and used by a large community and
supported by a professional software development company (Kitwarea).

• CMake:
• Simplified build system, easier maintenance
• Improved mechanism for extending capabilities (CMake language)
• Support for all major C, C++, and Fortran compilers.
• Automatic full dependency tracking (headers, src, mod, obj, libs, exec)
• Shared libraries on all platforms and compilers
• ...

• CTest:
• Parallel execution and scheduling of tests and test time-outs
• Memory testing (Valgrind)
• Line coverage testing (GCC LCOV)
• Better integration between the test system and the build system

ahttps://www.kitware.com

https://cmake.org

A. Heinlein, M. Mayr (TU Delft, UniBW) June 28, 2023 17/71

https://www.kitware.com
https://cmake.org

Why TriBITS?

• Framework for large, distributed multi-repository CMake projects
• Reduce boiler-plate CMake code and enforce consistency across large distributed projects
• Subproject dependencies and namespacing architecture: packages
• Automatic package dependency handling (for build & testing)
• Additional functionality missing in raw CMake
• Changes in default CMake behavior when necessary

A. Heinlein, M. Mayr (TU Delft, UniBW) June 28, 2023 18/71

Structural units of a TriBITS project

• TriBITS project:
• Complete CMake “project”
• Overall project settings

• TriBITS repository:
• Collection of packages & TPLs
• Unit of distribution and integration

• TriBITS package:
• Collection of related software & tests
• Lists dependencies on packages & TPLs
• Unit of testing, namespacing, and documentation

• TriBITS subpackage:
• Partitioning of package software & tests

• TriBITS Third Party Libraries (TPLs):
• Specification of external dependencies (libs)
• Required or optional dependency
• Single definition across all packages

Example from Trilinos:

Belos

Ifpack2

Amesos2

Kokkos

Tpetra Teuchos

required optional

A. Heinlein, M. Mayr (TU Delft, UniBW) June 28, 2023 19/71

Activation of Trilinos packages:
1 cmake \
2 −D . . . \
3 −D Trilinos_ENABLE_ALL_PACKAGES :BOOL=OFF \
4 −D . . . \
5 −D Trilinos_ENABLE_Amesos2 :BOOL=ON \
6 −D Tri l inos_ENABLE_Belos :BOOL=ON \
7 −D Belos_ENABLE_Tpetra :BOOL=ON \
8 −D Tri l inos_ENABLE_Ifpack2 :BOOL=ON \
9 −D Ifpack2_ENABLE_Amesos2 :BOOL=ON \

10 −D Trilinos_ENABLE_MueLu :BOOL=OFF \
11 −D Tril inos_ENABLE_Teuchos :BOOL=ON \
12 −D Tril inos_ENABLE_Tpetra :BOOL=ON \
13 −D . . . \
14 −D TPL_ENABLE_MPI :BOOL=ON \
15 −D TPL_ENABLE_ParMETIS :BOOL=ON \
16 −D . . . \
17 {$TRILINOS_SOURCE}

Example from Trilinos:

Belos

Ifpack2

Amesos2

Kokkos

Tpetra Teuchos

required optional

A. Heinlein, M. Mayr (TU Delft, UniBW) June 28, 2023 20/71

Scope of this tutorial

Software development using TriBITS:
• Beyond the scope of this tutorial
• Please consult the TriBITS online

resources:
• https://tribits.org
• https:

//github.com/TriBITSPub/TriBITS

Building Trilinos using TriBITS:
• Packages: how is Trilinos structured?
• Configure script: how to invoke CMake?
• Build and install Trilinos

A. Heinlein, M. Mayr (TU Delft, UniBW) June 28, 2023 21/71

https://tribits.org
https://github.com/TriBITSPub/TriBITS
https://github.com/TriBITSPub/TriBITS

Invoking CMake via a configure script

How to invoke CMake?

• $ cmake -D <option_1> -D <option_2> -D <...> {path/to/source}

Why use a configure script?
• Number of options in cmake command

grow very quickly ⇒ script reduces burden
to type everything into the command line

• Script helps to
• reproduce a configuration / re-configure
• debug a configuration
• share a configuration with colleagues and

collaborators

Recommendation
Always invoke CMake through a configure
script.

An exemplary configure script:
1 #!/ b in / bash
2
3 SOURCE_DIR=path / to / s r c / d i r e c t o r y
4 BUILD_DIR=path / to / b u i l d / d i r e c t o r y
5 INSTALL_DIR=path / to / i n s t a l l / d i r e c t o r y
6
7 cmake \
8 −D CMAKE_INSTALL_PREFIX :PATH="$INSTALL_DIR" \
9 −D CMAKE_CXX_COMPILER_FLAGS: STRING=" . . . " \

10 −D . . . \
11 −D . . . \
12 {$SOURCE_DIR}

A. Heinlein, M. Mayr (TU Delft, UniBW) June 28, 2023 22/71

Remarks:

• Recommendation: out-of-source build (i.e. SOURCE_DIR ̸= BUILD_DIR to keep source
directory clean from build artifacts

• BUILD_DIR and INSTALL_DIR can be the same (Depends on the project. Some projects
require them to be different.)

Practical tip
Sometimes when changing the CMake configuration, it can be necessary to clean the
BUILD_DIR (in particular, the CMake files).

If the CMake configuration fails unexpectedly, try again after deleting the CMake files in
the BUILD_DIR.

A. Heinlein, M. Mayr (TU Delft, UniBW) June 28, 2023 23/71

Writing your own configure scripts for Trilinos

Outline of a Trilinos configure script

1. Select your favorite shell environment
2. Define environment variables with

necessary paths
3. The cmake command

3.1 Compilation settings
3.2 General Trilinos settings
3.3 Package configuration
3.4 External dependencies / TPLs

Remarks:
• Structuring and indentation just a personal

recommendation for better readibitliy
• Ongoing refactorings in TriBITS:

distinction between package and TPL
might vanish in the future

1 #!/ b in / bash
2
3 TRILINOS_SOURCE=path / to / s r c / d i r e c t o r y
4 TRILINOS_BUILD=path / to / b u i l d / d i r e c t o r y
5 TRILINOS_INSTALL=path / to / i n s t a l l / d i r e c t o r y
6
7 cmake \
8 −D CMAKE_CXX_COMPILER_FLAGS: STRING=" . . . " \
9 −D CMAKE_INSTALL_PREFIX :PATH="$TRILINOS_INSTALL" \

10 −D . . . \
11 \
12 −D Trilinos_ENABLE_ALL_PACKAGES :BOOL=OFF \
13 −D . . . \
14 \
15 −D Trilinos_ENABLE_Amesos2 :BOOL=ON \
16 −D Tri l inos_ENABLE_Belos :BOOL=ON \
17 −D Belos_ENABLE_Tpetra :BOOL=ON \
18 −D Tri l inos_ENABLE_Ifpack2 :BOOL=ON \
19 −D Ifpack2_ENABLE_Amesos2 :BOOL=ON \
20 −D Trilinos_ENABLE_MueLu :BOOL=OFF \
21 −D Tril inos_ENABLE_Teuchos :BOOL=ON \
22 −D Tril inos_ENABLE_Tpetra :BOOL=ON \
23 −D . . . \
24 \
25 −D TPL_ENABLE_MPI :BOOL=ON \
26 −D TPL_ENABLE_ParMETIS :BOOL=ON \
27 −D . . . \
28 {$TRILINOS_SOURCE}

A. Heinlein, M. Mayr (TU Delft, UniBW) June 28, 2023 24/71

Configure, build, and install Trilinos

1. Create desired directory structure (source, build, install directories)
2. Get the source code: git clone git@github.com:Trilinos/Trilinos.git

<path/to/source/dir>

3. Write a configure script
4. Run the configure script in the build directory
5. Build in parallel on <numProc> processes: make -j <numProc>

6. Install: make install

A. Heinlein, M. Mayr (TU Delft, UniBW) June 28, 2023 25/71

Using Trilinos in application codes — Overview

Prerequesites:

• CMake version > 3.23
• Trilinos has been installed.

Tasks:

1. Make Trilinos available to the build configuration of the application code
2. Include Trilinos headers and instantiate Trilinos objects

Goals:

• Assert required packages during configuration
• Maybe: use same compiler/linker settings for Trilinos build and build of the application
• Proper setup and tear-down of parallel environment (MPI, Kokkos, ...)

A. Heinlein, M. Mayr (TU Delft, UniBW) June 28, 2023 26/71

Including Trilinos in CMakeLists.txt

• Set minimum CMake version to 3.23.0:
cmake_minimum_required (VERSION 3 . 2 3 . 0)

• Declare project, but don’t specify language and compilers yet. Defer until having found
Trilinos to match compiler/linker settings to those of the Trilinos installation.
p r o j e c t (name_of_your_project NONE)

• Get Trilinos as one entity and assert required packages (e.g. Teuchos & Tpetra)
f i nd_package (T r i l i n o s REQUIRED COMPONENTS Teuchos Tpetra)

• Make sure to use same compilers and flags as Trilinos
s e t (CMAKE_CXX_COMPILER ${Trilinos_CXX_COMPILER})
s e t (CMAKE_C_COMPILER ${Trilinos_C_COMPILER})
s e t (CMAKE_Fortran_COMPILER ${ Tri l inos_Fortran_COMPILER })

s e t (CMAKE_CXX_FLAGS "${Trilinos_CXX_COMPILER_FLAGS} ${CMAKE_CXX_FLAGS}")
s e t (CMAKE_C_FLAGS "${Trilinos_C_COMPILER_FLAGS} ${CMAKE_C_FLAGS}")
s e t (CMAKE_Fortran_FLAGS "${Trilinos_Fortran_COMPILER_FLAGS} ${CMAKE_Fortran_FLAGS }")

A. Heinlein, M. Mayr (TU Delft, UniBW) June 28, 2023 27/71

• Now, enable the compilers that we have gotten from Trilinos
enab l e_ language (C)
enab l e_ language (CXX)
i f (CMAKE_Fortran_COMPILER)

enab l e_ language (F o r t r a n)
e n d i f ()

• Build the application your_app and link to Trilinos
add_executab l e (your_app ${CMAKE_CURRENT_SOURCE_DIR}/ main . cpp)
t a r g e t _ i n c l u d e _ d i r e c t o r i e s (your_app PRIVATE

${CMAKE_CURRENT_SOURCE_DIR} ${Trilinos_INCLUDE_DIRS} ${Trilinos_TPL_INCLUDE_DIRS })
t a r g e t _ l i n k _ l i b r a r i e s (your_app ${ Tr i l inos_LIBRARIES } ${ Tril inos_TPL_LIBRARIES })

A. Heinlein, M. Mayr (TU Delft, UniBW) June 28, 2023 28/71

Including Trilinos in your source code

• Since Trilinos has been installed on your machine, include headers via
#i n c l u d e <Name_of_Tr i l inos_header . hpp>

• Recommendation: Setup parallel environment through Tpetra :: ScopeGuard which hides
details of MPI & kokkos initialization (and finalization) internally.
i n t main (i n t argc , cha r ∗ a rgv [])
{

Tpetra : : ScopeGuard t p e t r a S c o p e (&argc , &argv) ;
{

// Put a l l your code i n s i d e t h i s scope to n eve r l e t Tpetra o b j e c t s p e r s i s t a f t e r
// e i t h e r MPI_F ina l i ze o r Kokkos : : f i n a l i z e has been c a l l e d . Th i s i s because the
// o b j e c t s ’ d e s t r u c t o r s may need to c a l l MPI or Kokkos f u n c t i o n s .
// I n p a r t i c u l a r , n eve r c r e a t e Tpetra o b j e c t s a t main scope .

}
}

• Get the communicator object:
Teuchos : : RCP<c on s t Teuchos : : Comm<i n t >> comm = Tpetra : : getDefaultComm () ;

A. Heinlein, M. Mayr (TU Delft, UniBW) June 28, 2023 29/71

Hands-on exercises

How to work on these exercises?

• Hands-on exercises in the docker container (repository available at
https://github.com/EuroTUG/trilinos-docker)

• Code snippets to be completed (guided by instructions in a README file)
• Work in small groups:

• Possibility for collaboration, discussion and joint problem solving
• Some “tutors” will circle the room to answer questions and assist if necessary
• Raise your hand if you have questions

• No pressure to finalize the exercise. Solutions are part of the repository for later study.

A. Heinlein, M. Mayr (TU Delft, UniBW) June 28, 2023 30/71

https://github.com/EuroTUG/trilinos-docker

Configure Trilinos:
• Write a configure script for Trilinos with

the following packages enabled:
• Belos, Galeri, Ifpack2, Tpetra
• You might need further packages to

satisfy all required dependencies.

• Configure and build Trilinos with this
configuration.

• Material: exercises/ex_01_configure

Use Trilinos:
• Complete the CMakeLists.txt to include

Trilinos into the build of an exemplary
application

• Complete the app’s source code to setup
MPI through Tpetra :: ScopeGuard

• Get the communicator and print some of
its information to the terminal

• Material: exercises/ex_01_cmake

Hint
Both exercises are independent of each other. You do not have to wait for the build in
ex_01_configure to complete, since the second exercise uses a pre-installed Trilinos
installation. Just start a second instance of the docker container to get started on
ex_01_cmake, while the first exercise is still building. (Or skip the build process at all.)

A. Heinlein, M. Mayr (TU Delft, UniBW) June 28, 2023 31/71

