
IV. Using Trilinos in application codes - Part I

3 Tpetra Package

4 Tpetra::Map

5 Tpetra::Vector

6 Tpetra::MultiVector

7 Tpetra::CrsMatrix

8 Tpetra::CrsMatrix – Matrix assembly

9 Matrix-vector multiplication

10 Tpetra::Import & Tpetra::Export

A. Heinlein, M. Mayr (TU Delft, UniBW) June 28, 2023 31/71

Scope and goals

Scope
Focus on an introduction to the Tpetra linear algebra package with respect to
distributed-memory (MPI) parallelization.

Out of the scope
An introduction to all Trilinos packages including shared-memory (X) parallelization
using Kokkos.

A. Heinlein, M. Mayr (TU Delft, UniBW) June 28, 2023 32/71

Teuchos

Before working with Trilinos, please also take a look at the Teuchos package! It provides
many useful tools and is used all over the Trilinos code.

• Memory management (e.g., Teuchos::RCP smart pointers or Teuchos::Array arrays
with additional functionality)
(very helpful to replace many standard C++ data types and containers)

• Parameter lists
(very helpful for handling parameters for functions, classes, or whole programs)

• Communication (e.g., Teuchos::Comm)
(See https://docs.tri linos.org/dev/packages/teuchos/doc/html/classTeuchos_1_1
Comm.html)

• Numerics (e.g., BLAS and LAPACK wrappers)
• Output support, exception handling, unit testing support, and much more . . .

→ Teuchos Doxygen documentation:
https://docs.trilinos.org/dev/packages/teuchos/doc/html/

A. Heinlein, M. Mayr (TU Delft, UniBW) June 28, 2023 33/71

https://docs.trilinos.org/dev/packages/teuchos/doc/html/classTeuchos_1_1Comm.html
https://docs.trilinos.org/dev/packages/teuchos/doc/html/classTeuchos_1_1Comm.html
https://docs.trilinos.org/dev/packages/teuchos/doc/html/

Tpetra Package

Important classes:
Tpetra::Map Parallel distributions: Contains information used to dis-

tribute vectors, matrices, and other objects
Tpetra::Vector
& Tpetra::MultiVector

Distributed sparse vectors: Provides vector services such as
scaling, norms, and dot products.

Tpetra::Operator Base class for linear operators: Abstract interface for oper-
ators (e.g., matrices and preconditioners).

Tpetra::RowMatrix Distributed sparse matrices: An abstract interface for row-
distributed sparse matrices; derived from Tpetra::Operator.

Tpetra::CrsMatrix Distributed sparse matrices: Specific implementation of
Tpetra::RowMatrix, utilizing compressed row storage (CRS)
format

Tpetra::Import
& Tpetra::Export

Import/Export classes: Allow efficient transfer of objects
built using one mapping to a new object with a new mapping.

→ Tpetra Doxygen documentation:
https://docs.trilinos.org/dev/packages/tpetra/doc/html/

A. Heinlein, M. Mayr (TU Delft, UniBW) June 28, 2023 34/71

https://docs.trilinos.org/dev/packages/tpetra/doc/html/

Tpetra::Map

• The parallel linear algebra objects from Tpetra are typically distributed based on the
rows.

• Example: Consider the case of a vector V ∈ R5 and a sparse matrix A ∈ R5×5

V =

v
w
x
y
z

 A =

a b
c d e

f g h
i j k

l m

distributed among two parallel processes:

V =

v
w
x
y
z

 A =

a b
c d e

f g h
i j k

l m

proc 0

proc 1

A. Heinlein, M. Mayr (TU Delft, UniBW) June 28, 2023 35/71

• This can be implemented by storing the local portions of the vector and the matrix:

V0 =

v
x
z

 A0 =

a b
f g h

l m

 proc 0

V1 =
[

w
y

]
A1 =

[
c d e

i j k

]
proc 1

Problem: If only the partitioned data is available on the processes, the global vector V
and matrix A cannot be restored. In particular, it is not clear where the local rows are
located in the global matrix.

• Therefore, we additionally store the global row indices corresponding to the local
rows, here denoted as M0 and M1 (local-to-global map):

V0 =

v
x
z

 A0 =

a b
f g h

l m

 M0 =

0
2
4

 proc 0

V1 =
[

w
y

]
A1 =

[
c d e

i j k

]
M1 =

[
1
3

]
proc 1

A. Heinlein, M. Mayr (TU Delft, UniBW) June 28, 2023 36/71

• Using the local-to-global map, the global objects are fully specified.
Process 0:

V0 =

v
x
z

 A0 =

a b
f g h

l m

 M0 =

0
2
4

 proc 0

→ V0 =

v

x

z

 A0 =

a b

f g h

l m

Process 1:

V1 =
[

w
y

]
A1 =

[
c d e

i j k

]
M1 =

[
1
3

]
proc 1

→ V1 =

w

y

 A1 =

c d e

i j k

A. Heinlein, M. Mayr (TU Delft, UniBW) June 28, 2023 37/71

• In summary, in addition to the local portions of the global Tpetra objects,
local-to-global mappings are necessary to describe parallel distributed global objects:

V =

v
w
x
y
z

 A =

a b
c d e

f g h
i j k

l m

proc 0

proc 1

• The local-to-global mappings are stored in Tpetra::Map objects.

See https://docs.trilinos.org/dev/packages/tpetra/doc/html/classTpetra_1_1Map.html for
more details.

A. Heinlein, M. Mayr (TU Delft, UniBW) June 28, 2023 38/71

https://docs.trilinos.org/dev/packages/tpetra/doc/html/classTpetra_1_1Map.html

Tpetra::Map – Exemplary Map/Distribution for a Mesh

24

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

0

24

0 1 2

5 6 7

10 11 12

0 1 2

3 4 5

6 7 8

0

24

3 4

8 9

13 14

0 1

2 3

4 5

0

24

15 16 17

20 21 22

0 1 2

3 4 5

0

24

18 19

23 24

0 1

2 3

global indices local indices

A. Heinlein, M. Mayr (TU Delft, UniBW) June 28, 2023 39/71

Tpetra::Vector

As previously shown, a parallel distributed vector (Tpetra::Vector) essentially corresponds
to

• arrays containing the local portions of the vectors (entries) and
• a Tpetra::Map storing the local-to-global mapping.

V =

v
w
x
y
z

proc 0

proc 1

V0 =

v
x
z

 M0 =

0
2
4

 proc 0

V1 =
[

w
y

]
M1 =

[
1
3

]
proc 1

Constructor:
Vector (co n s t Teuchos : : RCP< c o n s t map_type >& map , /∗ o p t i o n a l ∗/)

map: Tpetra::Map object specifying the parallel distribution of the Tpetra::Vector. The
map also defines the length (local and global) of the vector.

A. Heinlein, M. Mayr (TU Delft, UniBW) June 28, 2023 40/71

Tpetra::MultiVector

• The Tpetra::MultiVector allows for the construction of multiple vectors with the
same parallel distribution:

V =

v11 . . . v1m

v21 . . . v2m
...

. . .
...

v(n−1)1 . . . v(n−1)m
vn1 . . . vnm

 ∈ Rn×m with n >> m

• A typical use case would be a linear equation system with multiple right hand sides:

AX = B

with A ∈ Rn×n, X ∈ Rn×m, and B ∈ Rn×m. Here, A would typically be a sparse matrix
and X and B multivectors.

• It can also be used to implement skinny dense matrices.

→ Constructing a Tpetra::MultiVector requires the number of vectors to be specified.
A. Heinlein, M. Mayr (TU Delft, UniBW) June 28, 2023 41/71

Tpetra::CrsMatrix

As previously shown, a parallel distributed sparse matrix (Tpetra::CrsMatrix) essentially
corresponds to

• the local portions of the sparse matrix and
• a Tpetra::Map storing the local-to-global mapping corresponding to the rows.

A =

a b
c d e

f g h
i j k

l m

proc 0

proc 1

A0 =

a b
f g h

l m

 M0 =

0
2
4

 proc 0

A1 =
[

c d e
i j k

]
M1 =

[
1
3

]
proc 1

In the Tpetra::CrsMatrix, the local portions of the sparse matrix are stored in compressed
row storage (CRS) format.

Minimal constructor:
CrsMat r i x (c o n s t Teuchos : : RCP< c o n s t map_type > &rowMap ,

c on s t s i z e _ t maxNumEntriesPerRow , /∗ o p t i o n a l ∗/)

rowMap Parallel distribution of the rows
maxNumEntriesPerRow Maximum number of nonzero entries per row

A. Heinlein, M. Mayr (TU Delft, UniBW) June 28, 2023 42/71

Tpetra::CrsMatrix – Column Map

• In addition to the row map, which corresponds to the local-to-global mapping of the row
indices, e.g.,

A =

a b
c d e

f g h
i j k

l m o
p q

M0 =
[

0
1

]
proc 0

M1 =
[

2
3

]
proc 1

M1 =
[

4
5

]
proc 2

there is also local-to-global mapping for the column indices, the column map.
• If the column map is not specified at the construction of the matrix, it can be generated

automatically by the Tpetra::CrsMatrix object at a later point.

A. Heinlein, M. Mayr (TU Delft, UniBW) June 28, 2023 43/71

A =

a b
c d e

f g h
i j k

l m o
p q

M0 =
[

0
1

]
proc 0

M1 =
[

2
3

]
proc 1

M1 =
[

4
5

]
proc 2

A compatible column map would corresponding to this row map would be:

A =

a b
c d e

f g h
i j k

l m o
p q

M̃0 =

0
1
2

 proc 0

M̃1 =

2
3
4
5

 proc 1

M̃2 =

3
4
5

 proc 2

A. Heinlein, M. Mayr (TU Delft, UniBW) June 28, 2023 44/71

• Column maps are generally not unique, as in our example:

A =

a b
c d e

f g h
i j k

l m o
p q

M̃0 =

0
1
2

 proc 0

M̃1 =

2
3
4
5

 proc 1

M̃2 =

3
4
5

 proc 2

Not unique means that multiple processes share global indices.

A. Heinlein, M. Mayr (TU Delft, UniBW) June 28, 2023 45/71

Tpetra::CrsMatrix – Matrix assembly

• After construction of the matrix, in order to insert values into the matrix, the functions
insertLocalValues() and insertGlobalValues() can be used.

• The entries to be inserted in a row are in specified in sparse format:
row Index of the row.

cols Indices of the columns where values should be inserted.
vals Values to be inserted.

(Multiple values inserted at the same location will be added up)

insertLocalValues() All indices have to be local. Furthermore,
◦ the column map must be available, and
◦ the row must be owned by the calling MPI rank.

insertGlobalValues() All indices have to be global.
◦ Rows which are not owned by the calling MPI rank are later
communicated to the owning MPI rank.

• If no column map is specified at construction, only insertGlobalValues() can be used.
Then, the column map is later built by the Tpetra::CrsMatrix.

A. Heinlein, M. Mayr (TU Delft, UniBW) June 28, 2023 46/71

• When all values have been inserted into the matrix, the assembly is finalized by calling
fillComplete(). Then:

• Rows on non-owning MPI ranks are communicated to the owning MPI ranks.
• The final CSR format of the matrix is computed. In particular, the indices are sorted and

multiple values inserted at the same location are added up.
• Global indices are transformed into local indices. Therefore, a new column map may be built.

• Only after calling fillComplete() the matrix can be further used, e.g., compute a
matrix-vector product.

• In case the row map or column map (in particular,
if it was automatically generated) is needed, it can be obtained using the member functions:

getRowMap() Returns the row map of the Tpetra::CrsMatrix

getColMap() Returns the columns map of the Tpetra::CrsMatrix
• After calling fillComplete(), no new values may be inserted. In order to insert new

values, resumeFill() has to be called.
• In order to change values at existing locations in the sparsity pattern of the matrix,

replaceLocalValues() and replaceGlobalValues() as well as
sumIntoLocalValues() and sumIntoGlobalValues() may be used.

A. Heinlein, M. Mayr (TU Delft, UniBW) June 28, 2023 47/71

Matrix-vector multiplication

• As mentioned earlier, the class Tpetra::CrsMatrix is derived from Tpetra::Operator.
Any Tpetra::Operator can be applied to a Tpetra::Vector or Tpetra::MultiVector
resulting in another Tpetra::Vector or Tpetra::MultiVector, respectively.

• The parallel application of any Tpetra::Operator is characterized by two maps, the
domain map and the range map.
domain map The map of any vector the operator is applied to.

range map The map of the resulting vector.
(Both the domain map and the range map have to be unique!)

• In particular, for a Tpetra::CrsMatrix, the following very general situation, where the
row map, domain map, and range map are all different, is allowed:

a b
c d e

f g h
i j k

l m

x0

x1

x2

x3

x4

 =

b0

b1

b2

b3

b4

A. Heinlein, M. Mayr (TU Delft, UniBW) June 28, 2023 48/71

• Performing the matrix-vector multiplication
a b
c d e

f g h
i j k

l m

x0

x1

x2

x3

x4

 =

b0

b1

b2

b3

b4

will obviously require communication.

• The corresponding communication is performed automatically. However, the domain
map and range map must have already been specified before application to a vector.

→ The domain map and range map can be specified within the fillComplete() call.
• If they are not specified, they will automatically be chosen as the row map of the matrix:

a b
c d e

f g h
i j k

l m

x0

x1

x2

x3

x4

 =

b0

b1

b2

b3

b4

Caution: In contrast to the domain map and range map, the row map does not have to be
unique.

A. Heinlein, M. Mayr (TU Delft, UniBW) June 28, 2023 49/71

Tpetra::Import & Tpetra::Export

• It is possible to change the parallel distribution of Tpetra objects. For example, from

V =

v
w
x
y
z

 A =

a b
c d e

f g h
i j k

l m

M0 =

0
2
4

 proc 0

M1 =
[

1
3

]
proc 1

to

V =

v
w
x
y
z

 A =

a b
c d e

f g h
i j k

l m

M0 =

[
0
1

]
proc 0

M1 =

2
3
4

 proc 1

• The row maps of the distributions are different. Furthermore, data transfer between the
processes is necessary. The data transfer is performed by a Tpetra::Import or
Tpetra::Export object.

A. Heinlein, M. Mayr (TU Delft, UniBW) June 28, 2023 50/71

• Tpetra::Import and Tpetra::Export objects are constructed using the Tpetra::Map
of the original distribution (source map) and the Tpetra::Map of the desired distribution
(target map):

M0 =

0
2
4

 proc 0

M1 =
[

1
3

]
proc 1

→

M0 =
[

0
1

]
proc 0

M1 =

2
3
4

 proc 1

Constructors

• Tpetra::Import

Import (c o n s t Teuchos : : RCP< co n s t map_type > &source ,
c on s t Teuchos : : RCP< c o ns t map_type > &t a r g e t) ;

• Tpetra::Export

Export (c on s t Teuchos : : RCP< c o n s t map_type > &source ,
c on s t Teuchos : : RCP< c o ns t map_type > &t a r g e t) ;

A. Heinlein, M. Mayr (TU Delft, UniBW) June 28, 2023 51/71

• Obviously, the redistribution

M0 =

0
2
4

 proc 0

M1 =
[

1
3

]
proc 1

→

M0 =
[

0
1

]
proc 0

M1 =

2
3
4

 proc 1

involves:
• Sending the global rows 2 and 4 from proc 0 to proc 1
• Sending the global row 1 from proc 1 to proc 0

• Communication is then performed using the member function
Tpetra : : D i s tOb j ec t <Packet , L o c a l O r d i n a l , G l o b a l O r d i n a l , Node >: : doExport (

c on s t S r c D i s t O b j e c t <Packet , L o c a l O r d i n a l , G l o b a l O r d i n a l , Node> &source ,
c on s t Export<L o c a l O r d i n a l , G l o b a l O r d i n a l , Node> &e x p o r t e r ,
c on s t CombineMode CM) ;

for the parallel distributed target object (vector, graph, matrix). The source object is
the corresponding parallel distributed map with the original distribution.
(In the corresponding doImport() function, the source and target objects are swapped)

A. Heinlein, M. Mayr (TU Delft, UniBW) June 28, 2023 52/71

Hands-on exercises

Assemble a linear system:

• Complete the app ex_02_assemble to assemble a linear system (discretized Laplace
operator) in Tpetra

• Material: exercises/ex_02_assemble

A. Heinlein, M. Mayr (TU Delft, UniBW) June 28, 2023 53/71

